Nguồn gốc và tiến hóa vũ trụ

Nguồn gốc và tiến hóa vũ trụ

Bài viết chưa xemgửi bởi lemontree » Thứ 7 Tháng 4 15, 2006 3:54 am

Vũ trụ có nguồn gốc từ đâu, vì sao vũ trụ xuất hiện? Vũ trụ tiến hoá như thế nào và có kết thúc hay không? Thú vị là chỉ trong vòng một thế kỷ, con người đã có thể thảo luận những câu hỏi ngàn đời đó một cách khoa học. Bài viết này cố gắng đưa ra một bức tranh sơ bộ về những câu hỏi nói trên.

Mô hình Big bang tiêu chuẩn
Mô hình Big Bang (vụ nổ lớn) cho rằng vũ trụ khởi thuỷ bằng một vụ nổ khoảng 15 tỷ năm trước. Tại vụ nổ, kích thước vũ trụ được xem là bằng không nên mật độ năng lượng và nhiệt độ vô cùng lớn. Sau vụ nổ, vũ trụ giãn nở và nguội dần, cho phép thành các cấu trúc như ta đã thấy ngày nay.

Ít nhất có ba cơ sở lý luận và thực tiễn dẫn tới mô hình. Thật thú vị khi biết chính một nhà văn là người đầu tiên cho rằng vũ trụ phải có điểm khỏi đầu. Nghịch lý Olbers (1823) cho rằng nếu vũ trụ vô tận trong không – thời gian thì nó phải có nhiều sao đến mức khi nhìn nên bầu trời, tia mắt ta bao giờ cũng gặp một ngôi sao. Và ta sẽ thấy bầu trời luôn sáng rực như mặt trời, ngay cả vào ban đêm. Những thực tế bầu trời ban đêm lại tối đen. Trong bài thơ văn xuôi dài Eureku năm 1848, Edgar Poe cho rằng, đó là do các ngôi sao không đủ thời gian để chiếu sáng toàn vũ trụ. Và bầu trời đêm tối đen chứng tỏ vũ trụ không tồn tại mãi mãi. Không chỉ đứng vững trước thử thách của thời gian mà giả thuyết còn đóng vai trò quyết định trong việc hình thành lý thuyết Big Bang.

Cơ sở lý luận thứ hai là thuyết tương đối tổng quát, cho rằng không – thời gian là các đại lượng động lực, phụ thuộc vật chất đồng thời chi phối vật chất (lưu ý quan niệm của Engels, cho rằng không – thời gian là hình thức tồn tại của vật chất). Điều đó dẫn tời việc không – thời gian la hình thức tồn tại của vật chất). Điều đó dẫn tời việc không – thời gian và do đó vũ trụ có thể có khởi đầu và kết thúc, một ý tưởng ban đầu chính Einstein cũng tìm cách chống lại.

Cơ sở thực tiễn của mô hình là phát hiện vũ trụ giãn nở của Hubble những năm 1920. Vũ trụ hiện đang giản nở và các thiên hà ngày càng xa nhau chứng tỏ trong quá khứ chúng gần nhau, khi vũ trụ có kích thước nhỏ hơn. Suy diễn ngược thời gian mãi sẽ đi đến thời điểm khai sinh, khi toàn vũ trụ tập trung tại một điểm, nơi có mật độ năng lượng, nhiệt độ và độ cong không thời gian vô hạn. Và một vụ bùng nổ sẽ khiễn vũ trụ sinh thành.

Tuy nhiên mật độ vật chất hay lực hấp dẫn quá lớn có thể khiến vũ trụ co lại ngay khi vừa giãn nở. Cùng với những nguyên nhân khác mà Alan Guth giả định sự giãn nở lạm phát, cho phép vũ trụ tăng kích thước 1030 lần chỉ trong khoảnh khắc (từ thời điển 10-35 đến thời điểm 10-32 giây sau vụ nổ). Vượt qua cái ranh giới thành bại tế vi đó, vũ trụ đắc thắng giãn nở và tạo ra mọi thứ, kể cả bản thân chúng ta.

Đó là mô hình vũ trụ nóng giãn nở lạm phát tiêu chuẩn. Năm 1991 khi viễn kính Hubble trên vệ tinh Cobe đo được phông bức xạ tàn dư từ nổ quá khứ đúng như tiên đoán, mô hình Big Bang được thừa nhận rộng rãi.

Những vấn đề bỏ ngỏ

Big Bang là mô hình tốt nhất hiện nay, nhưng tất nhiên nó vẫn còn nhiều vấn đề, bao gồm điểm kì dị và sự khởi đầu tối hậu. Vật lý luân tránh các điểm kì dị, nơi một đại lượng nào đó đạt giá trị vô cùng – điều chỉ có trong thế giới toán học trừu tượng. Big Bang chính là điểm kì dị như vậy và đó là điều cần tránh. Rồi Big Bang sinh ra vũ trụ, vậy cái gì sinh Big Bang? Không la khi nhà thờ rất hoan nghênh mô hình, vì xem Big Bang là hiện thân của đấng sáng tạo.

Một cách tránh vấn đề kì dị là lý thuyết dây của vật lý hạt (cơ bản). Lý thuyết dây xem cấu tử cơ bản nhất củ vũ trụ không phải là hạt (như điện tử, quark...) mà là dây hay siêu dây với 10 chiều. Có đến 5 lý thuyết dây và đến 1995 người ta thấy rằng chúng chỉ là phiên bản của một lý thuyết nền tảng hơn là lý thuyết màng 11 chiều. Các kiểu dao động khác nhau của màng được thể hiện thành các hạt cơ bản mà ta thấy. Quan điểm cũ xem hạt cơ bản là chất điểm không kích thước nên dẫn tới điểm kì dị, còn màng thì không vì chúng có kích thước xác định, dù rất nhỏ.

Bài toán khởi đầu tồi hậu thì phức tạp hơn. Một cách giải quyết vấn đề là khảo sát sự kết thúc. Vũ trụ giãn nở mãi mãi hay dần co lại trong một vụ co lớn (Big Crunch)? Nếu vũ trụ đủ vật chất, lực hấp dẫn sẽ thắng dần sự giãn nở và vũ trụ đủ vật chất, lực hấp dẫn sẽ thắng dần sự giãn nở và vũ trụ sẽ co về điểm kì dị chung cục. Và vụ nổ tạo nên chúng ta có thể có thể là kết quả của vụ co trước. Đó là mô hình vũ trụ luân hồi của Wheeler, với các chu trình co giãn nối thành vòng tròn như triết lý nhà Phật, một phương thức để tránh sự khởi đầu tối hậu.

Đáng tiếc Big Cruch không phải là đối xứng gương hoàn hảo của Big Bang. Khi vũ trụ co, các Photon sẽ nhận thêm năng lượng do trường hấp dẫn mạnh. Và vũ trụ khi kết thúc sẽ nóng hơn lúc khởi đầu. Kết quả là vụ nổ càng về sau càng mạnh hơn. Điều đó chứng tỏ vũ trụ vẫn cần một điểm khởi đầu tối hậu, giống như mô hình chỉ có một Big Bang vậy. Nhà thơ vẫn chưa mất đi nỗi hào hứng.

Cuộc cách mạng cuối thiên niên kỷ

Quan niệm luân hồi hàm ý vũ trụ đủ vật chất để có thể co lại. Nhưng quan niệm đó bị bác bỏ năm 1998. Việc quan sát các sao siêu mới đã dẫn tới một kết luận mang tính cách mạng: vũ trụ đang giãn nở ngày càng nhanh. Đó là tin không vui vì mô hình luân hồi được ưu thích hơn, nơi vũ trụ và sự sống có thể sinh diệt không ngừng nghỉ.

Tại sao vũ trụ giãn nở ngày càng nhanh? Câu trả lời khá đơn giản: vì thiếu lượng vật chất cần thiết. Quan trọng hơn, dường như vũ trụ chứa một dạng năng lượng đặc biệt có tác dụng phản hấp dẫn.

Vài chục năm trước các nhà thiên văn xem vũ trụ chỉ chứa vật chất sáng thông thường. Khi thấy tốc độ quay của các thiên hà quá nhanh, người ta giả định loại chất tối nhiều gấp 10 lần chất sáng (để lực hấp dẫn đủ bù với lực lý tâm do thiên hà quay, nều không thiên hà sẽ tan rã). Chất tối được chia thành hai loại; Loại thường (như sao lùn nâu, lỗ đen...) và loại lạ (như neutrino có khối lượng, các hạt giả thuyết axion hay Wimp...). Nay cần thêm vào loại vật chất hay năng lượng mới, gọi là năng lượng tối, chiếm tới hai phần ba khối lượng vũ trụ:


Thành phần
Tỷ lệ (%)
Minh Hoạ

Bức xạ
0,005
Ánh sáng, các bức xạ điện từ khác...

Chất sáng
0,5
Mặt trời, các sao, các hệ hành tinh...

Chất tối thông thường
3,5
Lỗ đen, sao lùn nâu, sao lùn đen...

Chất tối kỳ lạ
26
Neutrino có khối lượng, các hạt giả thuyết axion, wimp...

Năng lượng tối
70
Năng lượng chân không hay thành phần thứ năm...



Bản chất năng lượng tối với áp lực âm (để tạo phản hấp dẫn) có lẽ là thách thức lâu dài đối với vật lý và vũ trụ học.

Đầu tiên là năng lượng chân không. Chân không vật lý không phải là cõi hư vô, mà chứa đầy các hạt – phản hạt ảo, sinh diệt không ngừng do nguyên lý bất định Heisenberg. Theo đó, không thể xác định chính xác đồng thời giá trị các gặp đại lượng vật lý liên hợp (như vị trí và tốc độ, giá trị các cặp đại lượng vật lý liên hợp (như vị trí và tốc độ, giá trị và độ biến thiên của một trường vật lý...). Nên năng lượng chân không phải khác không, vì nếu bằng không thì độ biến thiên cũng bằng không; có nghĩa hai đại lượng được xác định chính xác đồng thời, điều mà nguyên lý bất định cấm. Đó là do sinh hạt và phản hạt ảo. Chẳng hạn trong 1cm3 trước mắt ta, luôn có 1030 điện tử ảo! Chúng gây hiệu ứng đó đếm được, như hiệu ứng Casimir. Tính toán thấy chúng tạo mật độ năng lượng lớn gấp 10120 lần các dạng vật chất khác, một con số khiến giới vật lý choáng váng!

Ứng cử viên thứ hai là thành phần thứ năm (chơi chữ theo Aristotle, người xem bốn yếu tố nước, lửa, không khí và đất tao nên vũ trụ). Đơn giản nhất là một trường lượng tử thay đổi rất chậm theo thời gian, cơ chế giải thích giai đoạn giãn nở lạm phát. Khả năng khác đến từ vật lý các chiều dư kỳ ảo, tức dây 10 chiều hay màng 11 chiều nói ở trên. Trong lý thuyết này, vật chất thông thường nằm trên các màng ba chiều. Các màng này nằm sát nhau trong chiều thứ 11. Ánh sáng đi theo các màng ba chiều đến mắt ta phải mất hàng tỷ năm, trong khi tác động hấp dẫn (hay phản hấp dẫn) thì đến ngay theo chiều dư, tạo giá trị ước lượng vô cùng lớn như vừa nói. Tuy nhiên, những khó khăn toán học khiến việc đưa ra một mô hình hoàn chỉnh là bất khả chỉ trước mắt mà còn có thể trong tương lai.

Mô hình màng và chạm

Nhằm giải quyết hai vấn đề kì dị và khởi đầu tối hậu, cuối 2001 các nhà khoa học Steinhardt, Turok, Khoury, Ovrut và Seiberg đề xuất mô hình màng và chạm, xem Big Bang không phải là khởi đầu của không –thời gian, mà là điểm chuyển tiếp giữa pha đang giãn nở và pha co lại trước đó. Đây chính là mô hình luân hồi, nhưng có ưu điểm hơn các mô hình luân hồi khác.

Mô hình giả định vũ trụ của chúng ta là một màng ba chiều trôi trong không gian bốn chiều. Một màng khác – một vũ trụ song song – nằm ngay bên cạnh ở khoảng cách vi mô trong chiều thứ tự. Vũ trụ này gần hơn cả làn da, những ta không thể thấy hay chạm được vào nó. Các màng này hành động giống như nối với nhau bằng lò xo: kéo lại khi các màng xa nhau và đẩy ra khi chúng lại gần, khiến các màng dao động ra xa rồi đến gần. Chúng tuần tự va chạm chính là Big Bang. Năng lượng Big Bang nguyên thuỷ là năng lượng va chạm; còn các thăng giá mật độ (thấy rõ trên phông bức xạ hoá thạch do vệ tinh Cobe đo được năm 1991 và là hạt giống phát triển thành các thiên hà sau này) là các vết nhăn của màng. Trong quá trình dao động và va chạm, các màng vẫn có thể tự co giãn.

So với mô hình lạm phát tiêu chuẩn, mô hình này co ưu điểm là không cần năng lượng tối để giải thích sự giãn nở ngày càng tăng của vũ trụ. Đơn giản đó là năng lượng “lò xo”. Theo Turok, ưu điểm khác là kì dị chỉ xuất hiện trong chiều thứ tư (khi hai màng va chạm thì khoảng cách bằng không), khả năng nhẹ nhất trong số các kì dị. Và do vẫn tiếp tục giãn nở trước và sau va chạm, các Photon sẽ không thu thêm năng lượng, nên Big Crunch không nóng hơn Big Bang, cho phép loại bỏ sự khởi đầu tối hậu, một chủ đề thần học ưa thích.

Tất nhiên mô hình cũng để lại nhiều vấn đề. Đầu tiên, kì dị nhẹ nhất thì vẫn là kì dị. Tiếp nữa, không rõ các thăng giáng nhỏ hay các vết nhăn của màng tái xuất hiện thế nào sau và chạm. Theo Linde, một người xây dựng mô hình lạm phát, điều đó giống như ném một cái ghế vào lỗ đen và hy vọng nó sẽ tái sinh. Rồi bản chất lực lò xo cũng là bài toán nan giải. Tuy nhiên nhiều nhà thiên văn hoan nghênh mô hình, vì như lời nhà lý thuyết dây nổi tiếng Veneziano ở Cern, chúng ta dễ chấp nhận ý tưởng Big Bang là kết quả của một cái gì đó hơn là nguyên nhân của mọi thứ.

“Tà Thuyết” Monday

Các mô hình trên đều vưởng phải bài toán năng lượng tối. Vì thế từ 1983, Mordehai Milgrom (israel) đề xuất Mond, tức động lực Newton biến đổi (Modified Newtonian Dynamics). Ông cho rằng định luật hai Newton F=ma sẽ biến thành F=ma2 ở các gia tốc thấp, cỡ 10-10 m/s2. Có nghĩa là chỉ cần một lực nhở hơn hay ít vật chất hơn để gia tốc các thiên hà. Và bài toán chất tối hay năng lượng tối sẽ mặc nhiên được loại trừ.

Ban đầu giới thiên văn bác bỏ Mond. Nhưng những thành công trong việc giải thích sự hình thành và tiến hoá của thiên hà (các phép đo mới đây phù hợp với tiên đoán của Milgrom nhiều năm trước) thuyết phục được một số nhà khoa học. Tuy nhiên họ không nghĩ động lực Newton sai, mà xem đó là một bổ chính có ý nghĩa thực hành, khi gọi nó là MIFF, tức công thức làm khớp Milgrom (Milgrom Fitting Formula).

Vũ trụ hữu hạn hay vô hạn?

Hãy xét nguyên lý Mach, cho rằng quán tính của vật là do nó tương tác với toàn vũ trụ. Có thể hiểu rõ hơn qua việc xét lực ly tâm trên một thùng nước. Khi quay nước trong thùng, mặt nước sẽ lõm xuống: ta nói nó chịu tác dụng của lực ly tâm. Đó là do nước quay so với thùng đứng yên? Hoàn toàn không, vì khi quay cả thùng và nước với cùng tốc độ, mặt nước vẫn lõm xuống. Mach cho rằng, mặt nước lõm vì “biết” nó đang quay đối với toàn vũ trụ. Nói cách khác, quán tính là do tương tác của toàn vũ trụ lên vật. Vì thế vũ trụ phải hữu hạn. Nếu vũ trụ vô hạn thì quán tính sẽ lớn vô hạn: Mọi vật không thể thay đổi trạng thái chuyển động, một điều trái với thực tế.

Nhưng đó chỉ là đơn vũ trụ (universe) của chúng ta. Nhiều người giả định các vũ trụ song sóng hay đa vũ trụ (munltiverse), mỗi vũ trụ có hệ qui luật riêng. Hãy nhớ lại các màng va chạm, không chỉ hai mà có thể nhiều hơn. Hoặc hình dung trò thổi bong bóng xà phòng, mỗi bong bóng là một đơn vũ trụ. Các bong bóng có thể nỗi với nhau bằng các lỗ sâu đục (wormhole). Theo thuyết tương đối tổng quát, chúng là đường tắt nối các vùng không thời gian trong một bong bóng, thậm chí nối các bong bóng vũ trụ với nhau. Chúng cho phép năng lượng phun trào giữa các bong bóng. Có thể hình dung một sự phun trào như thế chính là Big Bang đã sinh ra vũ trụ mà ta đang sống.

Như vậy có thể chúng ta đang sống trong một đơn vũ trụ hữu hạn. Đơn vũ trụ này là một trong vô vàn các màng hay bong bóng của một đa vũ trụ vô hạn. Ai cũng có thể hài lòng, du thích vũ trụ vô hạn hay hữu hạn.

Giả thuyết này giúp loại bỏ đấng sáng tạo tối cao. Trong tác phẩm nổi danh Giai điệu bí ẩn (đã dịch ra tiếng Việt), Trịnh Xuân Thuận đặt niềm tin vào đấng sáng và cho rằng ông muốn đặt niềm tin vào hy vọng chứ không phải tuyệt vọng. Theo ông, tìm được một bong bóng thích hợp cho sự sống giữa vô tận các bong bóng là việc bất khả, cũng như xem sự sống chỉ là sự biến ngẫu nhiên không thoả mãn được lòng tự tôn của con người. Thiển nghĩ vấn đề có khi ngược lại. Nếu con người do một đấng tối thượng tạo ra thì chúng ta chỉ là những con rối. Khi đó sẽ không có ý chí tự do chủ đề ưu thích của Bergson; cũng không có sự lựa chọn một trong những khả năng khác nhau, như một cách tự quyết định số phận – đặc trưng cơ bản của tính người. Còn nếu chúng ta xuất hiện như sự kết hợp vi diệu giữa cái ngẫu nhiên và cái tất nhiên chúng ta cần sống xứng đáng với tất cả những khó khăn của sự sinh thành. Và điều đó có thể có ý nghĩa nhân văn.

Đa vũ trụ sinh ra như thế nào?

Như trên đã nói, từng đơn vũ trụ là hữu hạn nhưng đã vũ trụ có thể vô hạn. Điều đó chúng tỏ nó chứa một năng lượng vô hạn, điều vô nghĩa về mặt vật lý? Rất may không phải như vậy.

Tính bật định lượng tử cho phép các cặp hạt – phản hạt ảo, hay các “bọt” năng lượng xuất hiện từ chân không, miễn là chúng ta sẽ biến mất sau thời gian tồn tại ngắn ngủi. Bọt càng ít năng lượng thì tồn tại càng lâu. Vì năng lượng trường hấp dẫn là âm, còn năng lượng chứa trong vật chất là dương, nên nếu đa vũ trụ là phẳng (dù đơn vũ trụ có thể cong), hai dạng năng lượng đó triệt tiêu nhau và năng lượng đa vũ trụ chính xác bằng không. Khi đó các qui tắc lượng tử cho phép nó tồn tại mãi mãi. Nói cách khác, chính tình hình bất định là nguyên nhân khiến vũ trụ có thể xuất hiện từ hư vô, một ý tưởng độc đáo đến mức khi nghe Gamow kể tại Princeton những năm 1940, Einstein đã đứng sững giữa đường khiến hai người suýt bị xe đâm chết.

Ta có thể đặt câu hỏi, vậy hư vô từ đâu xuất hiện? có lẽ đó là câu hỏi không hợp lý. Thoả đáng hơn là đặt câu hỏi, tại sao có tình bất định để vũ trụ có thể sinh thành? Và liệu có những câu hỏi nền tảng hơn nữa hay không?

Cuối cùng xin nhấn mạnh sự thống nhất giữa vi mô và vĩ mô. Chính nhờ đi đến tận cùng bản chất vi mô mà khoa học có thể hiểu hành tung vũ trụ. Những ý kiến cho rằng qui giản luận (re-ductionism), một cách tiếp cận dựa trên phép phân tích để ngày càng đi sâu vào cấu trúc vi mô của thế giới, đã mất hết khả năng nhận thức là không có cơ sở. Trong cuốn Các giấc mơ về lý thuyết cuối cùng, 1992, Steven Weinberg, nhà vật lý đoạt giải Nobel vì công lao thống nhất các tương tác yếu và điện tử, đã dành hẳn hai chương để phê phán các nhà triết học và bênh vực cho qui giản luận cùng phép phân tích.

(Theo Tạp chí Tia Sáng )
Hình đại diện của thành viên
lemontree
Mod
Mod
 
Bài viết: 65
Ngày tham gia: Thứ 5 Tháng 2 16, 2006 3:21 am
Đến từ: scorpions

Bài viết chưa xemgửi bởi lucgiac_muadong » Thứ 6 Tháng 4 28, 2006 2:26 pm

Bài của lemontree
Các nhà khoa học cho rằng, vũ trụ thoát thai từ Vụ nổ lớn (Big Bang) tại thời điểm 13,7 tỉ năm trước. Mới đây họ lại khoe rằng, có đến ba kịch bản khác nhau cho cái thời khắc sinh thành đó.

Vũ trụ học là một khoa học còn rất non trẻ. Ngay cả khi Einstein đã đưa ra thuyết hấp dẫn năm 1916, bằng chứng thực nghiệm duy nhất về nguồn gốc vũ trụ chỉ là bầu trời ban đêm tối đen. Nghịch lý Olbers (1823) cho rằng nếu vũ trụ vô tận trong không thời gian thì nó có nhiều sao đến mức khi nhìn lên bầu trời theo bất cứ hướng nào, tia mắt ta bao giờ cũng gặp một ngôi sao. Và ta sẽ thấy bầu trời luôn sáng rực như mặt trời, ngay cả vào ban đêm.

Thuyết Big Bang tiêu chuẩn

Nhưng thực tế bầu trời ban đêm lại tối đen. Thật thú vị là trong bài thơ văn xuôi dài Eureka năm 1848, Edgar Poe (cha đẻ của truyện trinh thám) cho rằng, đó là do các ngôi sao chưa đủ thời gian để chiếu sáng toàn vũ trụ. Vậy bầu trời đêm tối đen chứng tỏ vũ trụ hữu hạn cả trong không gian và thời gian. Không chỉ đứng vững trước thử thách của thời gian mà giả thuyết còn đóng vai trò quyết định trong việc hình thành lý thuyết Big Bang.

Cơ sở lý luận của Big Bang là thuyết tương đối tổng quát, cho rằng không thời gian không phải là cái nền cố định để mọi biến dịch vũ trụ diễn ra trên đó, mà là các đại lượng động lực, phụ thuộc vật chất đồng thời chi phối vật chất. Điều đó dẫn tới việc không thời gian và do đó vũ trụ có thể có khởi đầu và kết thúc, một ý tưởng mà ban đầu chính Einstein cũng tìm cách chống lại.

Bằng chứng quyết định là phát hiện vũ trụ giãn nở của Hubble (Mỹ) những năm 20 của thế kỷ trước. Cho đến lúc đó, dải Ngân hà của chúng ta được xem là toàn bộ vũ trụ. Với viễn kính 100 inch tại núi Wilson, Hubble thấy Tinh vân tiên nữ, một thiên hà sánh đôi cách 2 triệu năm ánh sáng, đang tiến lại gần chúng ta. Khảo sát các thiên hà khác, ông thấy chúng đang tản ra xa. Điều đó có nghĩa vũ trụ gồm hàng tỉ thiên hà đang tản xa nhau.

Vũ trụ hiện đang giãn nở và các thiên hà ngày càng xa nhau chứng tỏ trong quá khứ chúng gần nhau, khi vũ trụ có kích thước nhỏ hơn. Suy diễn ngược thời gian mãi sẽ đi đến thời điểm khai sinh, khi toàn vũ trụ tập trung tại một điểm, nơi có mật độ và độ cong không thời gian vô hạn. Và một vụ bùng nổ 13,7 tỉ năm trước đã khiến vũ trụ sinh thành. Đó là mô hình Big Bang tiêu chuẩn.

Năm 1946, nhà vật lý Mỹ gốc Nga Gamow thấy rằng, ngọn lửa sáng thế buổi hồng hoang vẫn để lại “vết lông ngỗng” qua bức xạ tàn dư trải trên toàn vũ trụ, nay lạnh chỉ còn cỡ 30 trên 00 tuyệt đối. Năm 1965, hai kỹ sư vô tuyến Penzias và Wilson tình cờ phát hiện được bức xạ này khi chế tạo một ăngten có thể bắt sóng từ vệ tinh. Như từng xảy ra trong lịch sử, giải Nobel danh giá được trao cho phát kiến tình cờ của hai người khá ngoại đạo! Năm 1992, vệ tinh COBE (Mỹ) đo được phông bức xạ này với độ chính xác rất cao. Và Big Bang được thừa nhận rộng rãi.

Khá hài hước là cái tên Big Bang lại do nhà thiên văn Hoyle đặt ra năm 1950 trong loạt bài Nguồn gốc vũ trụ trên Đài BBC để chế diễu lý thuyết. Ông là người đề xuất thuyết vũ trụ dừng năm 1948, theo đó vũ trụ không có khởi đầu và kết thúc. Sau khám phá bức xạ tàn dư, nó đã chết vẻ vang như nhiều lý thuyết khoa học khác.

Big Bang từ đâu xuất hiện? Có giả thuyết cho rằng Vụ nổ lớn là kết quả của Vụ co lớn (Big Crunch) trước đó, khi lực hấp dẫn thắng dần sự giãn nở và vũ trụ bắt đầu co về một điểm. Nói cách khác Big Bang là điểm chuyển pha giữa các pha co giãn xen kẽ nhau của vũ trụ.

Nhược điểm chí tử của mô hình trên là bài toán kì dị. Tại Big Bang, do kích thước nhỏ vô hạn, nên mật độ năng lượng hay độ cong không thời gian lớn vô hạn, điều không có trên thực tế. Đó là vì thuyết tương đối tổng quát là lý thuyết về các hiện tượng vĩ mô, nên không mô tả các thăng giáng lượng tử đặc trưng cho thế giới vi mô. Với Vụ nổ lớn hay lỗ đen, là các thực tại vật lý vừa nhỏ (nơi các hiệu ứng lượng tử chi phối), vừa nặng (nơi các hiệu ứng hấp dẫn chi phối), cần một lý thuyết thống nhất giữa thuyết lượng tử và thuyết tương đối. Đó là thuyết hấp dẫn lượng tử.

Lý thuyết dây và Big Bang

Trong số các thuyết hấp dẫn lượng tử, lý thuyết Dây là một trong hai tiếp cận khả quan nhất, cùng thuyết hấp dẫn lượng tử vòng. Quan điểm truyền thống xem hạt cơ bản là chất điểm không kích thước. Và đó chính là lý do xuất hiện các giá trị lớn vô cùng. Lý thuyết Dây tránh điều đó bằng cách giả thuyết bản thể vũ trụ là dây một chiều, màng hai chiều hay các thực thể nhiều chiều hơn. Chúng có kích thước rất nhỏ, nhưng không bằng không (lớn gấp 10 lần độ dài Planck, 10-33cm, là kích thước nhỏ nhất còn có ý nghĩa vật lý).

Giống sợi dây đàn dao động sẽ tạo ra các nốt nhạc, dây hay màng dao động trong không thời gian 11 chiều sẽ tạo ra mọi hạt cơ bản đã biết và chưa biết. Trong khi thuyết tương đối cho rằng vũ trụ có thể có kích thước zero; lý thuyết Dây cho rằng độ dài Planck là kích thước giới hạn của vũ trụ, vì đã chứng minh được rằng, các quy luật của thế giới dưới thang Planck hoàn toàn giống các quy luật của thế giới trên thang Planck. Nói cách khác vũ trụ vi mô hoàn toàn đồng nhất với vũ trụ vĩ mô, mà kích thước Planck chính là ranh giới.

Lý thuyết Dây đưa ra hai kịch bản khác kịch bản của thuyết tương đối. Đó là thuyết tiền Big Bang và thuyết màng va chạm.

Thuyết tiền Big Bang do nhà vật lý Ý Veneziano, cha đẻ của lý thuyết Dây, đưa ra năm 1991. Theo đó trong một vũ trụ vẫn đang tồn tại, có một vùng lực hấp dẫn đủ mạnh để hút vật chất co về Vụ co lớn. Khi Vụ co lớn đạt kích thước Planck thì nó bùng nổ thành Vụ nổ lớn. Và vũ trụ của chúng ta chính là một vụ nổ như thế khoảng 13,7 tỉ năm trước. Đó là một đơn vũ trụ (universe) tự thân co giãn trong một đa vũ trụ (multiverse), thuật ngữ của nhà thiên văn Anh mang tước hiệp sĩ Martin Rees.

Năm 2001, năm nhà khoa học Anh - Mỹ, đứng đầu là Steinhardt và Turok, đưa ra mô hình khác cũng dựa trên lý thuyết Dây. Theo đó vũ trụ chúng ta là một màng đa chiều trôi trong không gian nhiều chiều hơn. Vụ nổ lớn 13,7 tỉ năm trước chính là cú va chạm giữa màng của chúng ta với một màng khác nằm song song theo chiều dư. Va chạm có thể xảy ra nhiều lần, trước va chạm hai màng co lại, sau va chạm hai màng giãn nở, như Hubble đã thấy.

Một ưu điểm của mô hình tiền Big Bang là vũ trụ chúng ta có thể tự co giãn, trong khi mô hình va chạm cần thêm vũ trụ song song. Ngược lại, một ưu điểm của thuyết màng va chạm là giải quyết được bài toán vật chất và năng lượng tối nan giải. Đó chính là vật chất thông thường ở màng bên cạnh mà ta không “thấy” gì ngoài lực hấp dẫn.

Phải chăng đó chỉ là những giả thuyết không thể kiểm chứng? Không phải như vậy, ba kịch bản trên đều đưa ra tiên đoán về mật độ năng lượng và tần số sóng hấp dẫn. Trong vòng 10 năm tới, các vệ tinh Planck, LIGO và VIRGO sẽ được phóng lên quỹ đạo nhằm thu thập số liệu. Khi đó hoặc một kịch bản vượt vũ môn, hoặc cả ba đều thất bại. Và khoa học sẽ phải tìm một mô hình vũ trụ mới.

Đa vũ trụ ra đời như thế nào?

Trên đây là ba kịch bản ra đời của vũ trụ của chúng ta. Vậy đa vũ trụ xuất hiện từ đâu và xuất hiện như thế nào? Câu trả lời là đa vũ trụ xuất hiện từ hư vô do nguyên lý bất định. Theo quan điểm vật lý, hư vô không phải là không có gì, mà chứa đầy các thăng giáng lượng tử xuất hiện do nguyên lý bất định Heisenberg.

Nguyên lý này nói rằng, giá trị tuyệt đối và thăng giáng của các trường vật lý không thể xác định chính xác đồng thời. Nên các trường phải luôn thăng giáng quanh giá trị zero, vì nếu trường bằng zero thì thăng giáng của nó cũng bằng zero. Có nghĩa giá trị và thăng giáng của trường lại chính xác đồng thời (đều bằng zero). Đó là điều nguyên lý bất định cấm, nên trường phải khác không và luôn thăng giáng. Điều đó có nghĩa các “bọt năng lượng” luôn sinh ra và mất đi. Và một số bọt có thể thăng giáng đủ mạnh để giãn nở và trở thành các đơn vũ trụ như vũ trụ của chúng ta.

Như vậy, các đơn vũ trụ có thể sinh thành và tan vỡ không ngừng như trong trò thổi bong bóng xà phòng. Còn đa vũ trụ thì sao? Câu trả lời liên quan với tổng năng lượng. Năng lượng chứa trong vật chất là dương, còn năng lượng hấp dẫn giữa chúng là âm. Nếu đa vũ trụ là “phẳng” trong không thời gian đa chiều, giá trị hai năng lượng bằng nhau và tổng năng lượng toàn vũ trụ bằng không. Và nguyên lý bất định cho phép nó tồn tại mãi mãi. Vẫn hiện hữu mà vẫn lại là số không, vũ trụ chính là biểu hiện của triết lý sắc sắc không không của đạo Phật, ít ra là về ngôn ngữ.

Vậy tại sao lại có hư vô và nguyên lý bất định để vũ trụ tự sinh tự diệt? Người viết bài này cho rằng khoa học không thể đưa ra lời giải đáp. Và đó là một trong những lý do tồn tại vĩnh hằng của nghệ thuật hay tôn giáo.
Hình đại diện của thành viên
lucgiac_muadong
Thợ mộc chính hiệu
Thợ mộc chính hiệu
 
Bài viết: 1415
Ngày tham gia: Thứ 6 Tháng 3 11, 2005 10:55 am
Đến từ: K54_ Hải Dương
Blog: http://vhntnamdinh.edu.vn/

Bài viết chưa xemgửi bởi lucgiac_muadong » Chủ nhật Tháng 4 30, 2006 2:11 pm

( Bài của thầy Vinh bên trang của Trường)

Vụ Nổ Lớn là một lý thuyết khoa học về nguồn gốc của vũ trụ. Lý thuyết đó phát biểu rằng vũ trụ được bắt đầu từ một điểm kỳ dị có mật độ vật chất và nhiệt độ lớn vô hạn tại một thời điểm hữu hạn trong quá khứ. Từ đó, không gian đã mở rộng cùng với thời gian và làm cho các thiên hà di chuyển xa nhau hơn tạo ra một vũ trụ giãn nở như chúng ta thấy ngày nay.

Ý tưởng trung tâm của lý thuyết này là quá trình vũ trụ đang giãn nở. Nó được minh chứng bằng các thí nghiệm về dịch chuyển đỏ của các thiên hà (định luật Hubble). Điều đó có nghĩa là các thiên hà đang rời xa nhau và cũng có nghĩa là chúng đã từng ở rất gần nhau trong quá khứ và quá khứ xa xưa nhất, cách đây khoảng 13,7 tỷ năm, là một điểm kỳ dị. Từ "vụ nổ lớn" được sử dụng trong một nghĩa hẹp, đó là một thời điểm trong thời gian khi sự mở rộng của vũ trụ bắt đầu xuất hiện, và theo nghĩa rộng, đó là quá trình tiến hóa, giải thích nguồn gốc và sự phát triển của vũ trụ.

Lịch sử

Lý thuyết Vụ Nổ Lớn được đưa ra dựa trên cơ sở của các thành tựu của lý thuyết và thực nghiệm. Về mặt thực nghiệm, năm 1910, nhà khoa học Vesto Slipher và sau này là Carl Wilhelm Wirtz đã xác định rằng hầu hết các tinh vân hình xoáy ốc đang rời xa Trái Đất, nhưng họ không nhận ra ý nghĩa của việc này, họ cũng không nhận ra được là các tinh vân đó là các thiên hà ở ngoài Ngân Hà của chúng ra.

Cũng vào những năm 1910, lý thuyết tương đối rộng của Albert Einstein thừa nhận một vũ trụ không tĩnh tại. Vũ trụ được mô tả bằng một ten sơ metric là một vũ trụ đang giãn nở hoặc đang co lại. Nhưng bản thân Einstein lại cho rằng một vũ trụ như thế là sai và ông đã bổ sung một hằng số vũ trụ, có tác dụng như một lực hút để có thể mô tả một vũ trụ tĩnh tại. Người đầu tiên nghiên cứu thuyết tương đối rộng một cách nghiêm túc mà không cần đến hằng số vũ trụ là Alexander Friedmann, và ông đưa ra các phương trình mô tả cho vũ trụ Friedmann-Lemaître-Robertson-Walker.

Năm 1927, một thầy tu dòng tên người Bỉ là Georges Lemaître cũng đưa ra các phương trình Friedmann-Lemaître-Robertson-Walker một cách độc lập dựa trên các quan sát về sự lùi xa của các tinh vân hình xoáy ốc, và giả thiết rằng vũ trụ bắt đầu từ một "vụ nổ" của một "nguyên tử nguyên thủy" mà sau này gọi là "Vụ Nổ Lớn".
Năm 1929, Edwin Hubble đã đưa ra các cơ sở thực nghiệm cho lý thuyết của Lemaître. Hubble chứng minh rằng, các tinh vân hình xoáy ốc là các thiên hà và ông đo khoảng cách giữa chúng bằng các ngôi sao Cepheid. Ông phát hiện ra rằng các thiên hà đang rời ra xa chúng ta theo tất cả các hướng với vận tốc tỷ lệ với khoảng cách giữa chúng. Sự giãn nở này được gọi là định luật Hubble.
Do sự giới hạn của nguyên lý vũ trụ, định luật Hubble gợi ý rằng vũ trụ đang giãn nở. Điều này cho phép hai khả năng trái ngược nhau có thể xảy ra. Khả năng thứ nhất là lý thuyết về vụ nổ lớn của của Lemaître, và sau đó được George Gamow mở rộng là đúng. Khả năng thứ hai là vũ trụ tuân theo mô hình trạng thái dừng của Fred Hoyle, trong đó, vật chất được tạo ra khi các thiên hà chuyển động ra xa khỏi nhau. Theo mô hình của Hoyle, vũ trụ gần như không đổi theo thời gian. Thực ra chính Hoyle là người đã đặt tên cho lý thuyết của Lemaître một cách mỉa mai trên một chương trình của đài BBC vào năm 1949 là "vụ nổ lớn", đến năm 1950 cái tên trên mới được in ở trên các bài báo.
Trong rất nhiều năm, ý tưởng này vẫn gây nhiều tranh cãi. Tuy nhiên, có nhiều bằng chứng thực nghiệm ủng hộ ý tưởng cho rằng vũ trụ bắt đầu từ một trạng thái đặc nóng. Từ khám phá bức xạ phông vi sóng vũ trụ vào năm 1965 thì lý thuyết vụ nổ lớn được coi là lý thuyết tốt nhất để mô tả nguồn gốc và tiến hóa của vũ trụ.
Trước những năm cuối của thập kỷ 1960, rất nhiều nhà vũ trụ học nghĩ rằng điểm kỳ dị có mật độ vô hạn tại thời điểm bắt đầu của thời gian trong mô hình vũ trụ của Friedmann có thể không đúng nếu trước đó, vũ trụ ở pha co lại nhưng khi đến gần các thiên hà trượt qua nhau và chuyển sang pha giãn nở như hiện nay. Richard Tolman gọi vũ trụ như thê này là vũ trụ dao động. Tuy nhiên, vào những năm 1960, Stephen Hawking và những người khác chứng minh rằng vũ trụ như thế không thể tồn tại và điểm kỳ dị là một đặc điểm quan trọng nhất của vật lý được mô tả bằng lý thuyết hấp dẫn của Einstein. Điều này thuyết phục phần lớn các nhà vũ trụ học chấp nhận vũ trụ được mô tả bằng lý thuyết tương đối rộng được sinh ra tại một thời điểm hữu hạn trong quá khứ. Tuy nhiên, vì lý thuyết hấp dẫn lượng tử chưa hoàn thiện nên không có cách nào kiểm chứng điểm kỳ dị tại Vụ nổ lớn là một điểm khởi đầu cho vũ trụ và cũng không thể nào nói rằng vũ trụ có tuổi vô hạn.

Ngày nay, tất cả các công trình lý thuyết về vũ trụ học đều là phần mở rộng hoặc hiệu chỉnh lại lý thuyết Vụ nổ lớn ban đầu. Rất nhiều các công trình hiện nay về vũ trụ học bao gồm việc nghiên cứu sự hình thành của các thiên hà trong bối cảnh sau Vụ nổ lớn, tìm hiểu cái gì đã xảy ra tại Vụ nổ lớn và so sánh các kết quả thực nghiệm với lý thuyết.

Việc nghiên cứu về Vụ nổ lớn có những bước tiến bộ vượt bậc vào những năm 1990 và những đầu năm của thế kỷ 21 nhờ vào sự phát triển của kỹ thuật kính thiên văn kết hợp với một lượng lớn các dự liệu vệ tinh như Máy thăm dò phông vũ trụ (COBE), kính thiên văn không gian Hubble và Máy dò dị hướng vi sóng Wilkinson (WMAP). Các dữ liệu này cho phép các nhà vũ trụ học tính toán rất nhiều thông số về Vụ nổ lớn với độ chính xác cao và cho ra khám phá bất ngờ là sự giãn nở của vũ trụ không phải là đều mà đang được gia tốc. (Xem năng lượng tối).

Mô tả lý thuyết

Dựa trên các phép đo về sự giãn nở của vũ trụ bằng sao siêu mới loại I, các phép đo về sự trồi sụt của bức xạ phông vi sóng vũ trụ và các phép đo về hàm liên kết của các thiên hà, người ta xác định được tuổi của vũ trụ là 13.7 ± 0.2 tỷ năm. Kết quả giống nhau của ba phép đo độc lập này được coi là bằng chứng thuyết phục cho một mô hình gọi là mô hình Lambda-CDM mô tả chi tiết tính chất của vũ trụ.

Vũ trụ vào giai đoạn sớm là một vũ trụ đồng nhất và đẳng hướng với mật độ năng lượng, nhiệt độ và áp suất cực cao. Sau đó đó vũ trụ nở ra, lạnh đi và trải qua một quá trình chuyển pha giống như sự ngưng tụ của hơi nước hoặc sự đóng băng của nước khi nhiệt độ giảm xuống, tất nhiên là không phải sự chuyển pha của phân tử nước mà là của các hạt cơ bản.

Khoảng 10-35 giây sau kỷ nguyên Planck, một loại chuyển pha làm cho vũ trụ trải qua giai đoạn phát triển theo hàm mũ được gọi là giai đoạn lạm phát vũ trụ. Sau khi quá trình lạm phát kết thúc, thành phần của vũ trụ gồm các plasma quark-gluon (gồm tất cả các hạt khác, một số thực nghiệm gần đây gợi ý có thể vũ trụ lúc đó là một loại chất lỏng quark-gluon) ( http://www.aip.org/pnu/2005/split/728-1.html ). Các hạt này đều chuyển động tương đối. Khi vũ trụ tiếp tục gia tăng kích thước thì nhiệt độ tiếp tục giảm. Tại một nhiệt độ nhất định, một giai đoạn mà hiện nay người ta vẫn chưa biết hết về nó gọi là quá trình sinh hạt baryon, tại đó, các quark và gluon kết hợp với nhau để tạo nên các hạt baryon, như là proton và neutron, và bằng cách nào đó mà thể hiện tính phi đối xứng giữa vật chất và phản vật chất. Nếu tiếp tục hạ nhiệt độ thì sẽ dẫn đến nhiều quá trình chuyển pha có tính đối xứng bị phá vỡ hơn và làm cho các lực vật lý và các hạt cơ bản tồn tại ở trạng thái như chúng ta thấy ngày nay. Sau đó, một số proton và neutron kết hợp với nhau để hình thành các hạt nhân nguyên tử deuterium và hêli, quá trình này gọi là sự tổng hợp hạt nhân vụ nổ lớn. Khi vũ trụ tiếp tục bị nguội đi, vật chất không còn chuyển động với vận tốc tương đối nữa và mật độ năng lượng do khối lượng nghỉ thể hiện dưới dạng hấp dẫn sẽ thống trị mật độ năng lượng thể hiện dưới dạng bức xạ. Khoảng 300.000 năm sau vụ nổ lớn, các điện tử và các hạt nhân kết hợp với nhau tạo nên các nguyên tử (phần lớn là hydrogen); do đó, bức xạ được tách khỏi vật chất và tiếp tục truyền trong không gian mà hầu như không bị cản trở. Dấu vết của bức xạ này tồn tại đến ngày nay chính là bức xạ phông vi sóng.

Theo thời gian, một số vùng có mật độ vật chất cao hơn sẽ hút nhau do lực hấp dẫn và càng làm cho các vùng đó đặc hơn nữa để hình thành nên các đám mây vật chất, các ngôi sao, các thiên hà và các cấu trúc vũ trụ mà chúng ta quan sát được ngày nay. Chi tiết của quá trình này phụ thuộc vào lượng và loại vật chất trong vũ trụ. Có ba loại vật chất được biết là vật chất tối lạnh, vật chất tối nóng và vật chất thường. Các phép đo thực nghiệm cho thấy rằng dạng vật chất tối lạnh thống trị vũ trụ, nó chiếm đến hơn 80% khối lượng, trong khi hai loại vật chất kia chỉ chiếm chưa đến 20% khối lượng.

Về mặt năng lượng thì vũ trụ hiện nay có vẻ như bị thống trị bởi một dạng năng lượng bí ẩn được gọi là năng lượng tối. Khoảng 70% mật độ năng lượng toàn phần của vũ trụ tồn tại ở dạng này. Sự có mặt của dạng năng lượng này được suy ra từ sự sai khác giữa sự giãn nở của vũ trụ và công thức liên hệ giữa tốc độ - khoảng cách làm cho không thời gian giãn nở nhanh hơn trông đợi tại các khoảng cách lớn. Năng lượng tối xuất hiện như là một hằng số vũ trụ trong các phương trình Einstein của lý thuyết tương đối rộng. Nhưng bản chất, các chi tiết về phương trình trạng thái, và mối liên hệ với mô hình chuẩn của vật lý hạt vẫn còn chưa sáng tỏ và cần được nghiên cứu cả về lý thuyết lẫn thực nghiệm.

Tất cả các quan sát đều được giải thích bằng mô hình Lambda-CDM, trong đó, mô hình toán học về vụ nổ lớn có sáu thông số tự do. Bí ẩn xuất hiện khi người ta quan sát gần điểm khởi đầu, khi mà năng lượng của các hạt lớn hơn năng lượng mà các thực nghiệm chưa đạt được. Hiện không có mô hình vật lý nào mô tả vũ trụ ở thời điểm trước 10-33 giây, trước thời điểm chuyển pha được gọi là lý thuyết thống nhất lớn. Tại thời khắc ngắn ngủi đầu tiên này, lý thuyết Einstein về hấp dẫn tiên đoán một điểm kỳ dị hấp dẫn, tại đó mật độ vật chất trở nên vô hạn. Để giải quyết nghịch lý vật lý này, người ta cần đến lý thuyết lượng tử hấp dẫn. Đó là một trong những vấn đề chưa giải quyết được trong vật lý.

Cơ sở lý thuyết

Lý thuyết Vụ Nổ Lớn ngày nay dựa trên ba giả thuyết sau:

1. Tính phổ quát của các định luật vật lý
2. Nguyên lý vũ trụ học
3. Nguyên lý Copernic


Ban đầu, các giải thuyết trên chỉ được thừa nhận nhưng ngày nay có rất nhiều thực nghiệm kiểm tra tính đúng đắn của chúng. Tính phổ quát của các định luật vật lý được chứng minh là đúng đắn vì các sai số lớn nhất về hằng số cấu trúc tinh tế trong một khoảng thời gian bằng tuổi của vũ trụ chỉ cỡ khoảng 1/100000. Tính dị hướng của vũ trụ xác định nguyên lý vũ trụ và được kiểm nghiệm với độ chính xác 10-5 và vũ trụ được xác định là đồng nhất trên quy mô lớn với độ sai số khoảng 10%. Hiện nay người ta vẫn đang trong quá trình kiểm tra nguyên lý Copernic bằng cách nghiên cứu tương tác giữa các đám thiên hà bằng CMB thông qua hiệu ứng Sunyaev-Zeldovich với độ chính xác 1%.

Lý thuyết Vụ Nổ Lớn sử dụng giả thuyết Weyl để đo thời gian tại bất kỳ thời điểm nào sau kỷ nguyên Planck. Các phép đo này dựa trên các tọa độ quy chiếu trong đó khoảng cách quy chiếu và thời gian quy chiếu đã loại bỏ sự giãn nở của vũ trụ trên quan điểm của các phép đo không-thời gian. Khoảng cách quy chiếu và thời gian quy chiếu được định nghĩa sao cho các vật thể chuyển động trong các vũ trụ giãn nở khác nhau có cùng một khoảng cách và các chân trời hạt hay các giới hạn quan sát (của một vũ trụ nào đó) được xác định bởi thời gian quy chiếu.

Vì vũ trụ có thể được mô tả bởi các tọa độ như vậy, vụ nổ lớn không phải là một vụ nổ trong đó vật chất được phóng ra và lấp đầy một vũ trụ trống rỗng; cái đang giãn nở chính là không-thời gian. Đó chính là sự giãn nở làm cho khoảng cách vật lý giữa hai điểm cố định trong vũ trụ của chúng ta tăng lên. Các vật thể liên kết với nhau (ví dụ bị liên kết bởi lực hấp dẫn) thì không giãn nở cùng không-thời gian vì các định luật vật lý điều khiển chúng được giả thiết là đồng nhất và độc lập với các giãn nở metric. Hơn nữa, sự giãn nở của vũ trụ tại nấc thang cục bộ ngày nay quá nhỏ nên nếu có sự phụ thuộc nào của các định luật vật lý vào sự giãn nở thì sự phụ thuộc đó cũng rất nhỏ làm cho các máy đo không thể xác định được.

Bằng chứng thực nghiệm

Nói chung, có ba bằng chứng chủ yếu ủng hộ lý thuyết vụ nổ lớn về nguồn gốc vũ trụ. Đó là định luật Hubble cho thấy sự giãn nở của vũ trụ dựa trên sự dịch chuyển đỏ của các thiên hà; việc tìm ra bức xạ phông vi sóng vũ trụ; và sự thống trị của các nguyên tố nhẹ. (Xem thêm tổng hợp hạt nhân Vụ Nổ Lớn). Hơn nữa, các hàm liên kết của các cấu trúc tại các nấc thang vĩ mô của vũ trụ hoàn toàn trùng khớp với lý thuyết Vụ Nổ Lớn.


Định luật Hubble về sự giãn nở của vũ trụ

Các quan sát về các thiên hà và các quasar xa xôi cho thấy rằng ánh sáng từ chúng phát ra bị dịch chuyển về phía các ánh sáng có bước sóng dài hơn (dịch chuyển đỏ) và sự dịch chuyển đó tỷ lệ với khoảng cách giữa chúng. Sự dịch chuyển ánh sáng được rút ra từ phổ tần số của vật thể khi so sánh với các vạch phổ phát xạ hoặc hấp thụ của nguyên tử của các nguyên tố tương tác với bức xạ. Sự dịch chuyển đỏ này được giải thích bằng hiệu ứng Doppler đối với ánh sáng khi nguồn phát chuyển động ra xa nguồn thu. Sự dịch chuyển về phía bước sóng dài tỷ lệ với khoảng cách và hiện tượng này được biểu diễn bằng định luật Hubble như sau:

v = Ho. D

trong đó v vận tốc rời xa, D khoảng cách và Ho hằng số Hubble có giá trị bằng 71 ± 4 km/giây/Mpc.


Bức xạ phông vũ trụ

Lý thuyết vụ nổ lớn tiên đoán về sự tồn tại của bức xạ phông vi sóng vũ trụ được tạo thành từ các quang tử phát ra từ giai đoạn sinh hạt baryon. Vì vũ trụ thời kỳ sơ khai ở trạng thái cân bằng nhiệt động nên nhiệt độ của bức xạ và plasma bằng nhau cho đến khi plasma tái hợp. Trước khi nguyên tử được hình thành thì bức xạ bị hấp tụ và tái phát xạ đều trong một quá trình gọi là tán xạ Compton: vũ trụ vào giai đoạn sơ khai không trong suốt với ánh sáng. Tuy nhiên, quá trình nhiệt độ của vũ trụ bị giảm đi khi giãn nở làm cho nhiệt độ xuống thấp hơn 3000 K, tại nhiệt độ này thì điện tử và hạt nhân kếp hợp với nhau để tạo ra nguyên tử và các plasma nguyên thủy bị biến thành khí trung hòa. Quá trình này được gọi là quá trình giải phóng quang tử. Một vũ trụ chỉ gồm các nguyên tử trung hòa cho phép bức xạ truyền qua mà không bị cản trở nhiều.

Vì tại các giai đoạn sớm, vũ trụ ở trong trạng thái cân bằng nhiệt động nên bức xạ từ thời điểm này có phổ phân bố giống như phổ phát xạ của một vật đen được truyền một cách tự do cho đến ngày nay sẽ bị dịch chuyển đỏ theo định luật Hubble. Bức xạ đó phải được giống nhau theo mọi hướng trong không gian.

Kính thiên văn vô tuyến hình kèn mà hai nhà thiên văn Penzias và Wilson dùng và phát hiện bất ngờ bức xạ phông vũ trụ, tàn dư của Big Bang.

Năm 1964, Arno Penzias và Robert Wilson đã phát hiện ra bức xạ phông vũ trụ khi họ tiến hành nghiên cứu một máy thu tín hiệu vi sóng ở phòng thí nghiệm Bell. Khám phá của họ đã khẳng định tiên đoán về bức xạ phông vũ trụ, một bức xạ đẳng hướng và đồng nhất phân bố giống như phổ phát xạ của vật đen có nhiệt độ khoảng 3 K. Penzias và Wilson được trao giải Nobel về vật lý nhờ khám phá này.

Năm 1989, cơ quan hàng không vũ trụ Hoa Kỳ NASA đã phóng vệ tinh thăm dò phông vũ trụ (COBE), các kết quả ban đầu quan sát được rất phù hợp với các tiên đoán của lý thuyết vụ nổ lớn liên quan đến bức xạ phông vũ trụ. COBE đã tìm thấy nhiệt độ dư là 2,726 K và xác định được rằng bức xạ đó là đẳng hướng với độ chính xác 10-5. Vào những năm 1990, tính dị hướng của bức xạ phông vũ trụ được nghiên cứu rất chi tiết bằng rất nhiều các thí nghiệm và kết quả là về mặt hình học, vũ trụ là phẳng (xem hình dáng của vũ trụ).

Vào đầu năm 2003 các kết quả từ vệ tinh dị hướng vi sóng Wilkinson (WMAP) được phóng và đã thu được các giá trị chính xác nhất về các thông số vũ trụ. Vệ tinh này cũng loại bỏ một số mô hình lạm phát vũ trụ đặc biệt nhưng nhìn chung thì các kết quả phù hợp với lý thuyết lạm phát.

Sự hình thành các nguyên tố cơ bản

Sử dụng mô hình vụ nổ lớn, người ta có thể tính được mật độ helium-4, helium-3, deuterium và lithium-7 trong vũ trụ so với mật độ của hydrogen dựa trên tỷ lệ quang tử/baryon. Tỷ lệ tính toán là khoảng 0,25 đối với 4He/H, khoảng 10-3 đối với 2H/H, khoảng 10-4 đối với 3He/H và khoảng 10-9 đối với 7Li/H.

Tất cả cá giá trị đều rất phù hợp với tính toán từ tỷ lệ baryon/quang tử. Đây cũng được coi là một trong những bằng chứng rõ ràng nhất về vụ nổ lớn, đây là lý thuyết duy nhất có thể giải thích được sự thống trị của các nguyên tố nhẹ trong vũ trụ. Trên thực tế, không có kết quả thực nghiệm nào nằm ngoài khuôn khổ lý thuyết vụ nổ lớn, ví dụ, vũ trụ có nhiều helium hơn deuterium hoặc có nhiều deuterium hơn 3He.

Sự phân bố và tiến hóa của các thiên hà

Các nghiên cứu thực nghiệm về hình dáng và phân bố của các thiên hà và các quasar đã cho những bằng chứng rất thuyết phục về vụ nổ lớn. Kết hợp các quan sát và tính toán lý thuyết gợi ý rằng các quasar và các thiên hà được hình thành khoảng một tỷ năm sau vụ nổ lớn, và từ đó các cấu trúc lớn hơn được hình thành như các nhóm thiên hà, đám thiên hà và siêu đám thiên hà. Các ngôi sao cũng già đi và tiến hóa, do đó, các thiên hà xa xôi (chúng ta thấy ở chúng ở giai đoạn sớm của vũ trụ) sẽ rất khác các thiên hà gần hơn (chúng ta sẽ thấy chúng ở giai đoạn muộn hơn). Hơn nữa, các thiên hà hình thành gần đây sẽ rất khác với các thiên hà cũng ở gần như thế nhưng hình thành tại các giai đoạn rất sớm sau vụ nổ lớn. Các quan sát này là các chứng cớ phủ nhận mô hình trạng thái dừng. Các quan sát về sự hình thành các ngôi sao, sự phân bố của các thiên hà và quasar, và các cấu trúc lớn hơn phù hợp rất tốt với mô hình lý thuyết về cấu trúc của vũ trụ và cho phép hoàn thiện các tính toán chi tiết.

Các đặc điểm và các bài toán

Về mặt lịch sử, có rất nhiều các bài toán xuất hiện trong lý thuyết Vụ Nổ Lớn. Một số bài toán chủ yếu có tính lịch sử và được khắc phục bằng cách thay đổi lý thuyết hoặc thông qua các kết quả thực nghiệm chính xác hơn. Một số vấn đề khác như là bài toán phân bố và bài toán thiên hà lùn về vật chất tối lạnh không được coi là quan trọng vì chúng chỉ liên quan đến các hiệu chỉnh của lý thuyết.

Có một số lý thuyết không tin vào sự tồn tại của Vụ Nổ Lớn, cho rằng nghiệm của các bài toán chuẩn là do các sửa đổi và bổ sung tùy ý vào lý thuyết. Phần lớn các lý thuyết đó tấn công vào các hiện tượng như vật chất tối, năng lượng tối và thăng giáng vũ trụ. Các vấn đề này là các bài toán chưa có lời giải trong vật lý, chúng tuy chưa có lời giải nhưng có nhiều quan sát ủng hộ chúng, đó là bức xạ phông vi sóng, cấu trúc vũ trụ tại các nấc thang vĩ mô và các sao siêu mới loại IA. Hiệu ứng hấp dẫn của các thực thể này đã được hiểu về mặt thực nghiệm và lý thuyết thậm chí các mô hình để giải thích cho chúng chưa hoàn toàn phù hợp với mô hình chuẩn của vật lý hạt. Tuy vậy, phần lớn các nhà thiên văn học và các nhà vật lý đều đồng ý rằng sự phù hợp giữa giải thuyết về vụ nổ lớn và các quan sát đã thiết lập các nền tảng cho lý thuyết này.

Sau đây liệt kê tóm tắt các bài toán của lý thuyết Vụ Nổ Lớn.

Bài toán về chân trời

Bài toán về chân trời phát sinh từ việc thông tin không thể truyền nhanh hơn vận tốc ánh sáng, do đó sẽ có hai vùng không gian cách nhau một khoảng cách lớn hơn quãng đường mà ánh sáng đi được trong một thời gian bằng tuổi của vũ trụ. Như vậy, nếu hai vật thể ở đầu hai khoảng cách xa đến thế, sẽ không thể biết được thông tin về nhau, điều này tương tự như tồn tại một chân trời, mà đằng sau nó, chúng không có mối quan hệ nhân quả với chúng ta. Như thế thì tính đẳng hướng của bức xạ phông vũ trụ sẽ không chắc chắn bởi vì kích thước của chân trời hạt tại thời điểm này chỉ tương ứng với kích thước của hai độ khối trên bầu trời. Nếu vũ trụ có lịch sử giãn nở giống nhau từ kỷ nguyên Planck thì sẽ không có lý do nào làm cho các vùng đó có cùng nhiệt độ.

Sự bất hợp lý này được giải quyết bằng lý thuyết lạm phát, lý thuyết này cho rằng trường năng lượng vô hướng đồng nhất và đẳng hướng thống trị vũ trụ tại thời điểm 10-35 giây sau kỷ nguyên Planck. Trong quá trình lạm phát, vũ trụ trải qua giai đoạn giãn nở theo hàm mũ và những vùng nằm trong mối liên hệ nhân quả sẽ giãn nở sao cho chúng nằm ngoài mối quan hệ nhân quả với chân trời của vùng khác. Nguyên lý bất định tiên đoán rằng, trong thời kỳ lạm phát có các thăng giáng nhiệt lượng tử được khuyếch đại lên đến quy mô vũ trụ. Các thăng giáng này, có vai trò như là các hạt nhân của các cấu trúc vũ trụ hiện thấy ngày nay. Sau thời kỳ lạm phát, vũ trụ giãn nở theo định luật Hubble và các vùng nằm bên ngoài mối quan hệ nhân quả sẽ trở lại chân trời. Điều này giải thích tính đẳng hường của bức xạ phông vũ trụ. Thuyết lạm phát còn tiên đoán thăng giáng nguyên thủy hầu như không đổi được coi là bất biến khoảng cách và tuân theo phân bố Gauss được khẳng định bằng các quan sát về bức xạ phông vũ trụ.

Bài toán về độ phẳng

Bài toán về độ phẳng là một bài toán thực nghiệm phát sinh từ việc nghiên cứu hình dáng vũ trụ liên quan đến nghiệm Friedmann-Lemaître-Robertson-Walker. Nói chung, vũ trụ có thể có ba loại hình dáng: hình hyperbol, hình Euclide và hình ellip. Hình dáng của vũ trụ phụ thuộc vào mật độ năng lượng toàn phần của vũ trụ (được đo bằng ten sơ ứng suất-năng lượng): nếu mật độ nhỏ hơn mật độ tới hạn thì vũ trụ sẽ có dạng hình hyperbol, nếu lớn hơn thì có dạng ellip, còn nếu đúng bằng giá trị đó thì sẽ có dạng Euclide. Giá trị mật độ năng lượng hiện nay của vũ trụ đo được chỉ khác độ một phần 1015 giá trị mật độ tới hạn trong trạng thái ban đầu của nó. Các thay đổi khác (với giá trị một phần 1015) sẽ dẫn đến hoặc Cái Chết Nhiệt hoặc Vụ Co Lớn và vũ trụ sẽ không tồn tại như hiện nay.

Lời giải cho bài toán này lại một lần nữa là lý thuyết lạm phát. Trong thời kỳ lạm phát, không-thời gian giãn nở nhanh đến mức các độ cong có liên quan đều bị là phẳng đi và do đó vũ trụ có dạng phẳng.

Các đơn cực từ

Đơn cực từ là một trong những phản đề xuất hiện vào cuối những năm 1970. Lý thuyết thống nhất lớn tiên đoán các sai hỏng điểm trong không gian có vai trò như các đơn cực từ có mật độ cao hơn mật độ mà các quan sát thu được, và cho đến nay, chưa tìm thấy một đơn cực từ nào. Bài toán này cũng được giải bằng lý thuyết lạm phát, loại bỏ tất cả các sai hỏng điểm tương tự như giải quyết bài toán về độ phẳng của vũ trụ ở phần trước.

Bất đối xứng baryon

Người ta vẫn không hiểu tại sao có nhiều vật chất hơn phản vật chất. Giả thiết đưa ra là, khi vũ trụ còn trẻ và nóng, vũ trụ ở trong một trạng thái cân bằng thống kê và có số baryon bằng số phản baryon. Tuy nhiên, các quan sát cho thấy rằng tất cả vũ trụ đều được tạo thành từ vật chất, ngay cả tại những khoảng cách xa. Một quá trình chưa được biết đến được gọi là quá trình sinh hạt baryon tạo ra sự bất đối xứng này. Để quá trình sinh hạt baryon xuất hiện, các điều kiện Sakharov, do Andrei Sakharov đưa ra, cần phải được thỏa mãn. Các điều kiện đó yêu cầu số các baryon không được bảo toàn, tức là đối xứng-C và đối xứng-CP bị vi phạm, và vũ trụ xuất phát từ trạng thái cân bằng nhiệt động. Tất cả các điều kiện này xuất hiện trong Vụ Nổ Lớn, nhưng hiệu ứng của nó không đủ mạnh để giải thích sự tồn tại của bất đối xứng baryon. Các nghiên cứu mới về vật lý hạt năng lượng cao cần được tiến hành để giải thích vấn đề trên.

Các đám cầu

Vào giữa những năm 1990, các quan sát thực nghiệm về các đám cầu mâu thuẫn với lý thuyết Vụ Nổ Lớn. Các mô phỏng máy tính để làm khớp các quan sát thực nghiệm về số các thiên thể của các đám cầu cho thấy rằng chúng có tuổi khoảng 15 tỷ năm, mâu thuẫn với con số 13,7 tỷ tiên đoán từ lý thuyết Vụ Nổ Lớn. Bài toán này được giải quyết vào cuối những năm 1990, khi các mô phỏng máy tính tính đến sự mất mát khối lượng do gió thiên thể đã chỉ ra tuổi của các đám cầu trẻ hơn nhiều so với mô phỏng trước đây. Việc làm thế nào để đo chính xác tuổi của các đám cầu vẫn là vấn đề cần giải quyết, nhưng rõ ràng là các vật thể này là các vật thể già nhất trong vũ trụ.

Vật chất tối

Trong những năm 1970 và 1980 các quan sát thực nghiệm cho thấy rằng không có đủ vật chất khả kiến để làm cho vật chất trong các thiên hà và giữa các thiên hà để giữ chúng quay bằng lực hấp dẫn. Điều này dẫn đến ý tưởng cho rằng 90% vật chất trong vũ trụ là vật chất không bình thường, không được tạo thành từ các hạt baryon và được gọi là vật chất tối. Nếu không có giả thuyết về vật chất tối thì không giải thích được tại sao vũ trụ lại quá phẳng và có quá ít deuterium đến thế. Lúc đầu, vật chất tối còn gây tranh cãi nhưng bây giờ nó được chấp nhận rộng rãi và được coi như một phần của vũ trụ chuẩn nhờ vào các quan sát về dị hướng của bức xạ phông vũ trụ, phân bố vận tốc của các đám thiên hà, phân bố cấu trúc tại các nấc thang lớn của vũ trụ, nghiên cứu về thấu kính hấp dẫn, các phép đo tia X về đám thiên hà. Vật chất tối chỉ được quan sát thông qua ảnh hưởng hấp dẫn của nó ngoài ra hiện chưa có bằng chứng gì khác. Tuy nhiên, có rất nhiều các ứng cử viên vật lý hạt cho vật chất tối, một vài dự án đang được tiến hành.

Năng lượng tối

Vào những năm 1990, các phép đo chi tiết về mật độ vật chất của vũ trụ cho thấy rằng giá trị đo được chỉ bằng 30% giá trị tới hạn. Từ quan sát bức xạ phông vũ trụ người ta thấy vũ trụ là phẳng và 70% mật độ năng lượng của vũ trụ chưa được tính đến. Điều này liên quan đến một hiệu ứng khác, đó là vũ trụ giãn nở với một gia tốc chứ không phải tuân theo chính xác định luật Hubble. Để giải thích tính gia tốc của quá trình giãn nở, lý thuyết tương đối rộng yêu cầu phần lớn vũ trụ tạo thành từ một dạng năng lượng có áp suất âm gọi là năng lượng tối. Năng lượng tối này được cho rằng chính là phần 70% thiếu hụt từ quan sát bức xạ phông vũ trụ. Bản chất của năng lượng tối vẫn là một trong những bí mật vĩ đại nhất về Vụ nổ lớn. Các lời giải khả dĩ là sự tồn tại của một hằng số vũ trụ.


Tương lai của lý thuyết Vụ Nổ Lớn


Trước khi có những bằng chứng về năng lượng tối, các nhà vũ trụ học đưa ra hai kịch bản về tương lai của vũ trụ. Nếu mật độ khối lượng của vũ trụ cao hơn mật độ tới hạn thì vũ trụ sẽ giãn nở đến một kích thước cực đại rồi bắt đầu co lại. Sau đó, vũ trụ sẽ trở lên đặc hơn và kết thúc ở một trạng thái tương tự như trạng thái mà nó sinh ra - một Vụ co lớn. Nhưng nếu mật độ vũ trụ bằng hoặc thấp hơn mật độ tới hạn thì sự giãn nở sẽ chậm đi nhưng không bao giờ dừng lại. Sự hình thành các vì sao sẽ không còn nữa và vũ trụ trở lên loãng và lạnh hơn. Nhiệt độ của vũ trụ sẽ tiệm cận đến nhiệt độ không tuyệt đối. Các hố đen sẽ bay hơi hết. Entropy của vũ trụ sẽ tăng đến một điểm mà ở đó không còn một dạng năng lượng nào có thể được phát ra từ đó, kịch bản này gọi là cái chết nhiệt. Hơn nữa, nếu quá trình phân rã proton mà có thực thì hydrogen, nguyên tố phổ biến nhất của vật chất baryon sẽ biến mất chỉ để lại sau nó là các bức xạ.

Các quan sát hiện đại về quá trình giãn nở gia tốc gợi ý rằng ngày càng có nhiều vật chất khả kiến hiện nay sẽ đi ra khỏi chân trời sự kiện và thoát khỏi tầm tương tác với chúng ta. Kết quả cuối cùng thế nào chúng ta vẫn chưa biết. Mô hình Lambda-CDM về vũ trụ có chứa năng lượng tối ở dạng một hằng số vũ trụ. Lý thuyết này gợi ý rằng chỉ có các hệ liên kết với nhau bằng lực hấp dẫn như là các thiên hà là có thể liên kết với nhau và chúng có thể chịu cái chết nhiệt khi vũ trụ giãn nở và lạnh đi. Một số giải thuyết cho rằng năng lượng tối là năng lượng ma và gợi ý rằng các đám thiên hà và ngay cả các thiên hà sẽ bị kéo ra xa khỏi nhau và sự giãn nở sẽ tăng lên mãi mãi trong một quá trình gọi là Sự xé lớn.

Các vấn đề vật lý thú vị

Trong vũ trụ học, lý thuyết Vụ nổ lớn đang được hoàn thiện và được tinh chỉnh trong tương lai. Nhưng người ta vẫn chưa biết nhiều về giai đoạn sớm nhất của vũ trụ, khi quá trình lạm phát xảy ra. Về nguyên tắc, chúng ta có thể quan sát được một phần vũ trụ ở thời đó. Nếu là trường hợp lạm phát thì điều này đòi hỏi: sự giãn nở theo hàm mũ sẽ đẩy nhiều vùng không gian ra khỏi chân trời quan sát của chúng ta. Có thể là vùng không gian đó sẽ giảm đi khi chúng ta hiểu rõ hơn vật lý năng lượng cao. Người ta trông đợi nhiều vào lý thuyết lượng tử hấp dẫn.

Một số giả thuyết đưa ra là:

* Lạm phát vũ trụ
* Mô hình Vũ trụ màng: coi Vụ nổ lớn là sự va chạm giữa các màng.
* Vũ trụ dao động: vũ trụ ở trạng thái ban đầu rất nóng, đặc là kết quả của Vụ co lớn. Vũ trụ có thể đã trải qua vô số những vụ nổ, co như vậy.
* Mô hình có điều kiện biên Hartle-Hawking: toàn bộ không thời gian là hữu hạn.
Một số kịch bản là tương đương với nhau, tất cả các kịch bản đều có chứa các yếu tố chưa được kiểm chứng.


Ý nghĩa triết học và tôn giáo

Có rất nhiều các giải thích ý nghĩa của Vụ nổ lớn nằm ngoài phạm vi khoa học. Một số giả thuyết cho rằng Vụ nổ lớn là tự thân (nguyên nhân đầu tiên) nhưng bị các nhà triết học theo phái tự nhiên chủ nghĩa phê phán là coi lý thuyết Vụ nổ lớn là thần thoại về sự sáng thế. Một số người cho rằng Vụ nổ lớn ủng hộ quan điểm Sáng thế trong Kinh thánh, trong khi một số người khác thì cho rằng nó hoàn toàn không phù hợp với các tín điều trong Kinh thánh. Lý thuyết Vụ nổ lớn là một lý thuyết khoa học, nó không liên quan đến bất kỳ một tôn giáo nào.

Sau đây là một số cách giải thích về Vụ nổ lớn của một số tôn giáo:

* Rất nhiều người biện giải cho Cơ đốc giáo, đặc biệt là Giáo hội Công giáo La Mã đã chấp nhận Vụ nổ lớn là bằng chứng về nguồn gốc của vũ trụ, coi đó là nguyên nhân đầu tiên. Giáo hoàng Pius XII ủng hộ lý thuyết này từ khi nó chưa được chấp nhận rộng rãi.
* Ngoài ra còn một số người theo đạo Do thái và những người tin theo thuyết phi hình người chấp nhận Vụ nổ lớn, điển hình là học giả người Do thái Moses Maimonides.
* Tín đồ Hồi giáo cũng tin rằng vụ nổ lớn chính là sự sang thế trong Kinh Qur`an.
* Một số người theo thuyết hữu thần trong Ấn độ giáo cũng tin như vậy.
* Phật giáo thừa nhận một vũ trụ vĩnh hằng, không có quá trình sáng thế. Tuy nhiên, Vụ nổ lớn không được coi là mâu thuẫn với Phật giáo vì có nhiều cách để có được một vũ trụ vĩnh cửu. Nhiều nhà Thiền học nghiêng về vũ trụ dao động.

vinhastro trích dẫn và giới thiệu
Hình đại diện của thành viên
lucgiac_muadong
Thợ mộc chính hiệu
Thợ mộc chính hiệu
 
Bài viết: 1415
Ngày tham gia: Thứ 6 Tháng 3 11, 2005 10:55 am
Đến từ: K54_ Hải Dương
Blog: http://vhntnamdinh.edu.vn/

Bài viết chưa xemgửi bởi lemontree » Thứ 5 Tháng 5 04, 2006 3:01 am

http://starchild.gsfc.nasa.gov/docs/Sta ... 1/sun.html
mọi người mới tiếp xuc bước đầu với thiên văn bằng tiếng Anh thì vào dây nè.toàn từ đơn giản thôi.
Hình đại diện của thành viên
lemontree
Mod
Mod
 
Bài viết: 65
Ngày tham gia: Thứ 5 Tháng 2 16, 2006 3:21 am
Đến từ: scorpions

Re: Nguồn gốc và tiến hóa vũ trụ

Bài viết chưa xemgửi bởi lucgiac_muadong » Chủ nhật Tháng 10 05, 2008 9:32 pm

Einstein và thuyết tương đối rộng
Năm 1905, một nhân viên kĩ thuật 26 tuổi ở phòng cấp bằng sáng chế phát minh tại Berne, Đức đã công bố thuyết tương đối hẹp. Đó là Einstein, phủ nhận cơ học cổ điển Newton, một lý thuyết đã được biết đến và luôn nghiệm đúng với thực tế suốt 300 năm cho biết thời gian là tuyệt đối và mọi chuyển động của không gian diễn ra trên cái nền tuyệt đối đó.
Với sự ra đời của lý thuyết tương đối hẹp, Einstein khẳng định rằng
- Thời gian cũng chỉ có tính tương đối, nó phụ thuộc hệ qui chiếu
- Mọi định luật vật lí là như nhau trong mọi hệ quy chiếu.
Và một phương trình kinh điển được khắc lên mộ ông sau này: E = MC2, khối lượng có thể chuyển hoá thành năng lượng, và ngược lại. Công thức này ko những cho phép khám phá bí mật năng lượng của các sao, mà còn chế tạo 2 quả bom nguyên tử đã tàn phá 2 thành phố Hiroshima và Nagasaki năm 1945.
Giả sử có 2 anh em sinh đôi là John và Jim. John du hành vào không gian trên một tên lửa bay với vận tốc bằng 87% C. Jim ở lại trên trái đất. 2 anh em liên lạc với nhau bằng cách gửi cho nhau sóng vô tuyến. Jim thấy rằng, với các dụng cụ đo thừoi gian và khoảng cách mà anh có trên Trái đất, John khi bay trong ko gian sẽ già chậm hơn mình 2 lần, phi thuyền của John sẽ ngắn lại so với KT trên Trái đất 2 lần và khối lượng tăng lên 2 lần. Hay nói cách khác, Jim thấy khi thời gian giãn ra, tức là nó trôi chậm hơn, thì ko gian cũng co lại chừng ấy; và ngược lại.
Khi kết thức chuyến đi của mình, John quay về trái đất và gặp lại Jim đã già hơn mình rất nhiều. Như vậy, trong chừng mực nào đó, John đã du hành đến tương lai của Jim. Tuy nhiên, đây hoàn toàn chỉ là giả định, trở ngại đầu tiên là cơ thể chúng ta ko thể chịu đựng được những cú tăng tốc đột ngột và vận tốc lớn như vậy mà ko bị vụn ra.
Ko thể tăng tốc motọ vật có khối lượng đạt đến vận tốc ánh sáng, bởi khi chuyển động với vận tốc lớn, khối lượng của vật đó tăng theo, Vd phi thuyền của John, nếu đạt gần vận tốc AS thì khối lượng tăng đến vô cùng, phải có một lượng nhiên liệu vô cùng lớn để duy trì chuyển động của phi thuyền. Trờ ngạiv ề nhiên liệu là ko thể vượt qua. Do đó, ko thể đạt đến vận tốc ánh sáng, và càng ko thể vượt qua nó.
Phải chăng từ xa xưa người ta đã có ý tưởng về sự co giãn không thời gian? Trong các truyện cổ tích, có chàng trai lên trời ở 3 ngày, khi xuống mặt đất đã 3 năm trôi qua.
Thuyết tương đối hẹp chỉ mô tả được chuyển độngt hẳng đều của các vật, nhưng ko mô tả được chuyển động có gia tốc. Lực hấp dẫn cũng vắng bóng trong phương trình của ông.
Từ trước, trong cơ học Newton, không gian là phẳng và các vật thể hút nhau bởi lực hấp dẫn. Tuy nhiên, Einstein chỉ xem không gian là phẳng khi không có vật chất và năng lượng.
Từ đó, ông cho ra đời thuyết tương đối rộng, có thể diễn giải nôm na là: sự hiện diện của 1 khối lượng, vd Mặt trời, sẽ làm cho cấu trúc của không gian quanh nó bị cong đi.
Sự cong này lại ảnh hưởgn tới các vật khác chuyển động ở lân cận mặt Trời, vì chúng phải chuyển động qua một cấu trúc không gian bị biến dạng. Hình ảnh minh hoạ với àng cao su và quả bowling, nếu ta đặt 1viên bi nhỏ trên màng đó và cho nso vận tốc ban đầu, thì quãng đường mà nó đi sẽ phụ thuộc rằng quả bowling có được đặt ở tâm hay ko. Nếu ko có quả bowling ở đó, màng cao su sẽ phẳng và viên bi sẽ chuyển động theo một đường thẳng. Nếu có mặt quả bowling và do đó làm cong màng cáo u, thì viên bi sẽ chuyển động với quỹ đạo cong. Nếu bỏ qua ma sát, thả viên bi chuyển động với vận tốc và hướng thích hợp, nó sẽ tiếp tục chuyển động theo một quỹ đoạ cong, tuần hoàn quanh quả bowling . Đó cũng là cách giải thích về cơ chế truyền lực hấp dẫn của Einstein.
Giống như quả bowling, Mặt trời làm cong cấu trức không gian bao quanh nó và chuyển động của Trái Đất, giống như chuyển động của viên bi, được xác định bởi hình dạng sự cong đó. Trái đất, giống như viên bi, sẽ chuyển động xung quanh Mặt trời nếu như vận tôốcvà sự định hướng của nó có giá trị thích hợp. Tác dụng này lên Trái đất chính là cái mà chúng ta thường viện đến như là tác dụng hấp dẫn của Mặt trời. Einstein đã chỉ ra được cơ chế truyền hấp dẫn: sự cong của không gian. Từ đó, lực hấp dẫn theo cách mới được hiểu như sau:
- Quả bowling càng nặng thì sự biến dạng nó gây ra cho màng cao su càng lớn. Tương tự, mộtv ật có khối lượng càng lớn thì sự biến dạng nó gây ra cho không gian xung quanh cũng càng lớn. Như thế, nếu motọv ậtc àng nặng thì tác dụng hấp dẫn cua rnó lên vật khác càng lớn.
- Sự biến dạng do quả bowling gây ra cho tấm màng cao su càng nhỏ khi ta càng xa quả bowling, mức độ cong của ko gian do một vật nặng như Mặt trời gây ra sẽ giảm khi khoảng cách tới vật đó tăng. Lực hấp dẫn càng yếu khi khoảng cách giữa các vật càng lớn.
Cần chú ý là Trái đất cũng làm cong không gian do khối lượng của nó, do đó nó cũng giữ được Mặt Trăng trên quỹ đạo. Các vật chuyển độngt rong ko gian (ko thời gian) dọc theo những con đường khả dĩ ngắn nhất hay ít bị cản trở nhất. Nếu không gian bị cong, những con đường như thế là cong.
Tuy nhiên, mô hình minh hoạ màng cao su và quả bowling so với Mặt trời, Trái đất khac snhau về bản chất và cơ chế vật lý:
- MT làm cho cấu trúc xung quanh nó bị cong, nhưng ko phải như quả bowling bị kéo xuống bởi trọng lực .
- Mô hình mình hoạ của chúng ta chỉ là mô hình 2 chiều, trong thực tế, tất cả các vật có khối lượng đều làm cong không gian 3 chiều xung quanh nó. Nhà vật lý John Wheeler đã nói: “Khối lượng áp đặt sự chi phối của nó lên ko gian bằng cách nói cho không gian biết phải cong đi như thế nào, còn không gian áp đặt sự chi phối của nó lên khối lược bằng cách nói cho khối lượng biết phải chuyển động như thế nào”.
- Trong mô hình này, chúng ta đã bỏ đi chiều thời gian.
Sự lệch của các tia sáng khi đi qua các vật thể có khối lượng lớn (các ngôi sao) đã được kiểm chứng vào năm 1919 qua việc quan sát sự sai khác về vị trí của các ngôi sao khi có hiện tượng Nhật thực. Cuộc quan sát này đã góp một phần rất lớn khẳng định sự đúng đắn của lý thuyết tương đối tổng quát của Einstein. Nó còn cho phép chúng ta tận dụng một hẹ quả của lí thuyết này trong việc quan sát các thiên thể và tìm kiếm quá khứ. Đó là thấu kính hấp dẫn (Gravitational lens).
Thấu kính hấp dẫn là hiện tượng ánh sáng từ các ngôi sao, các thiên hà ở xa khi đi đến Trái Đất bị bẻ cong khi đi gàna các ngôi sao lớn hay các thiên hà, sự bẻ cong ánh sáng ở rìa của ngôi sao hay thiên hà chặn đường này làm các tia sáng từ thiên hà xa khi đến với chúng ta hội tụ lại giống như khi đi qua một thấu kính hội tụ và việc này cho phép chúng ta quan sát rõ hơn hình ảnh các thiên hà này (đã được phóng to nhờ chiếc thấu kính hấp dẫn)
Thuyết tương đối tổng quát còn đưa ra cho chúng ta một phương trình trường mô tả vũ trụ mà các bạn sẽ biết rõ hơn về lịch sử của nó ở một phần sau của tài liệu này.

Lỗ đen
Vũ trụ giãn nở
Trước khi đi vào vấn đề này, chúng ta hãy tìm hiểu về hiệu ứng Doppler.
Một tiếng còi trên xe cấp cứu tiến đến ta sẽ có tần số cao hơn (chói hơn) khi xe đứng yên. Tần số này giảm dần (trầm hơn) khi xe vượt qua ta và nhỏ hơn bình thường khi xe chạy ra xa.
Hay như cơ chế hoạt động của súng bắn tốc độ. Các bạn đi ra đường đã bị cảng sát GT bắn tốc độ bao giờ chưa? Sử dụng cơ chế radar và hiệu ứng Doppler, phát ra một bước sóng radio có tần số xác định f0 rồi thu nhận tần số sóng radio f1 phản xạ ngược trở lại từ phương tiện giao thông đang di chuyển với vận tốc u. Từ f0 và f1 ta sẽ tính ra được vận tốc của phương tiện giao thông đó.
Tần số tăng lên khi nguồn tiến về phía người quan sát, và giảm đi khi nguồn đi ra xa người quan sát(với điều kiện chuyển động giữa nguồn và người không phải là chuyển động đều).
Một giai thoại về Doppler: một hôm Doppler vượt đèn đỏ, ko may ông bị CS chặn xe lại. Ông phân bua rằng xe mình chạy nhanh, nên ông ko thấy đèn đỏ nữa mà chỉ thấy màu xanh thôi, theo như nghiên cứu của ông. Anh CS lúng túng. Tất nhiên đó chỉ là giai thoại cho vui, thực tế phải một chuyển động gần vận tốc ánh sáng mới có sự dịch chuyển xanh như vậy.
Năm 1929, bằng các quan sát của mình, Edwin Hubble phát hiện thấy một hiện tượng lạ trong phổ của các thiên hà quan sát được. Phổ của tất cả các thiên hà này đều dịch chuyển về phía đỏ một cách có hệ thống. Cụ thể, mức độ dịch chuyển này tỉ lệ với khoảng cách của các thiên hà đến chúng ta. Ðiều đó cho thấy tất cả các thiên hà này đều đang lùi xa ra khỏi chúng ta với tốc độ ngày càng lớn (tỷ lệ với khoảng cách).
Như vậy, các thiên hà đều đang rời xa chúng ta từ tất cả mọi hướng. Từ đó có thể dễ dàng thấy rằng vũ trụ đang giãn nở với tốc độ rất lớn, tốc độ này được liên tục gia tốc, tức là càng ngày tốc độ giãn nở càng nhanh. Vậy phải chăng chúng ta đúng là trung tâm của vũ trụ khi mà tất cả các thiên hà đều đang rời xa ta về mọi phía như thế? Câu trả lời là không! Vũ trụ đang giãn nở không ngừng, đúng như thế. Tuy nhiên sự giãn nở này không có một tâm nào cả, chúng ta không phải là tâm của vũ trụ, thượng đế không ban cho con người Trái Ðất một đặc quyền nào hết.
Cho đến đầu thế kỉ 20, người ta vẫn cho vũ trụ là tĩnh. Bị ám ảnh bởi điều này, khi tìm ra phương trình mô tả vũ trụ, Einstein đã thấy kết quả vũ trụ đang giãn nở. Ko tin vào kết quả đó, ông thêm vào hằng số vũ trụ để có 1 vũ trụ tĩnh. Tuy nhiên, sau khi Hubble đã chứng minh vũ trụ đang giãn nở, ôngthừa nhận sai lầm của mình: “Đó là sai lầm lớn nhất đời tôi”.
Lí thuyết BIGBANG
Lí thuyết BIGBANG được đề ra bởi George Gamov vào năm 1948
Ðây là một lí thuyết về một vũ trụ đặc và nóng, có điểm khởi đầu. Lí thuyết này cho biết vũ trụ đã khởi đầu bằng một vụ nổ lớn (bigbang) diễn ra cách đây chừng 15 tỷ năm.
- t = 0. Vũ trụ ra đời bằng bigbang. không có gì để nói vì thời gian này được giới hạn bởi bức tường Plank
- t = 10^-43s. Thời gian Plank, kích thước vũ trụ là 10^-33cm, đây là những giới hạn lượng tử mà vật lí chưa thể vượt qua. Nhiệt độ của vũ trụ lúc này là khoảng 10^32K. Tất cả mọi trạng thái của vũ trụ là hết sức hỗn độn.
- Tiếp sau là thời kì lạm phát, kích thước vũ trụ tăng lên rất nhanh và hình thành các hạt và phản hạ. Tiếp nữa là thời kì bức xạ, nhiệt nộ giảm dần, hình thành nên những hạt nhân nguyên tử của nguyên tố đầu tiên: hidro và heli, các hạt nhân này chiếm ưu thế trong vũ trụ một thời gian dài. Nhiệt độ tiếp tục giảm, các e bị thu về các hạt nhân, tạo nên nguyên tử của các nguyên tố. Các hạt cơ bản tạo ra các dạng vật chất, khi và bụi tăng lên rồi tập hợp với nhau thành từng nhóm, tạo nên các thiên hà và các ngôi sao.
- t = 15 tỷ năm: hiện nay
Do có thời gian có hạn và có nhiều thuật ngữ chuyên nhành, nên chúng tôi chỉ tóm tắt quá trình ày, còn lại nhường cho bạn đọc tự tìm hiểu.
Lí thuyết BIGBANG này ngày nay đã được công nhận gần như tuyệt đối do nó có cơ sở dựa trên lí thuyết tương đối rộng, nguyên lí về "vũ trụ đồng nhất và đẳng hướng" và sự dời xa của các thiên hà theo quan sát của Hubble.
Nguyên lí vũ trụ đồng nhất và đẳng hướng nêu trên lúc đầu được gọi là "nguyên lí vũ trụ học" được đưa ra bởi A.Friedman. Đây là giả thuyết cho rằng vũ trụ là tương tự nhau ở mọi nơi và theo mọi hướng. Tức là xét trên mức độ vĩ mô, người quan sát ở bất cứ thời điểm nào và tại bất cứ nơi đâu cũng thấy vũ trụ là như nhau theo mọi hướng. Sau các khám phá về quá trình tiến hóa và giãn nở của vũ trụ, nguyên lí này được bỏ bớt một ý, đó là sự đồng nhất về thời gian. Đúng như vậy, vũ trụ có biến đổi về thời gian nhưng dù đúng ở bất cứ điểm nào và quan sát về bất cứ hướng nào thì vũ trụ cũng là như nhau.
Cho đến năm 1965, lí thuyết BIGBANG có thêm một khẳng định nữa khi bức xạ tàn dư của vũ trụ được 2 kĩ sư vô tuyến điện Arno Penzias và Robert Wilson phát hiện khi chế tạo ăng ten bắt sóng từ vệ tinh. Penzias và Wilson đã phát hiện qua kính thiên văn vô tuyến một lọai bức xạ điện từ vi ba trên bước sóng 3cm. Ðây là loại bức xạ tràn ngập vũ trụ và hoàn toàn đẳng hướng, có nghĩa là ta đo được nó từ mọi hướng. Năm 1991, vệ tinh COBE (Cosmic Background Exporer) đã đo được phông bức xạ hoá thạch là 2.7 độ Kelvin với độ chính xá rất cao. Và Big Bang đã được thừa nhận rộng rãi.
Bạn cũng có thể thấy bức xạ hoá thạch trên màn hình TV nhà bạn sau khi kết thúc chương trình. Bạn thấy các chấm sáng nhỏ nhảy múa trên màn hình Khoảng 1% nhiễu này là do các photon của bức xạ háo thạch gây ra. Nó đã đi một hành trình dài suốt 13,5 tỉ năm qua để đến thăm Trái đất.
Như vậy là theo thuết BigBang nói trên, tất cả chúng ta (vũ trụ) đã ra đời cách đây 15 tỷ năm bởi một vụ nổ. Ta không thể nói gì về nó vì ngoài phạm vi của BigBang thì không tồn tại vật chất và bức xạ, do đó không tồn tại khái niệm không gian và thời gian, từ duy nhất ta có thể dùng để chỉ nó là "không gì cả". Chúng ta không thể có khái niệm không gian và thời gian vào trước khi BIGBANG xảy ra. Vì sao lại như vậy?
Như trên đã nói, toàn bộ vật chất (các hạt) chỉ được tạo thành bởi vụ nổ lớn (BIGBANG). Vậy có nghĩa là trước BB không hề có sự tồn taị của các hạt mà chúng ta đã biết. Như vậy là không có một sự khác biệt nào để phân biệt 2 điểm, như vậy là không gian không hề tồn tại. Mặt khác ta lại biết rằng thời gian chỉ là một đại luợng biểu diễn các quá trình. Vậy ở đây ta sẽ sử dụng thời gian để làm gì khi không có sự biến đổi, sự chuyển động của các hạt. Vậy ta có thể đi đến kết luận thòi gian cũng không tồn tại ngoài phạm vi của BIGBANG. Như thế thì chúng ta lại có một lưu ý nhỏ là không bao giờ được phép nói rằng BIGBANG đã bùng phát tại "một điểm" vì đơn giản là điểm thì phải được xác định trong một không gian hình học nào đó trong khi ở đây ta không có không gian.
Việc nghiên cứu về Vụ nổ lớn có những bước tiến bộ vượt bậc vào những năm 1990 và những đầu năm của thế kỷ 21 nhờ vào sự phát triển của kỹ thuật kính thiên văn kết hợp với một lượng lớn các dự liệu vệ tinh như Máy thăm dò phông vũ trụ (COBE), kính thiên văn không gian Hubble và Máy dò dị hướng vi sóng Wilkinson (WMAP). Các dữ liệu này cho phép các nhà vũ trụ học tính toán rất nhiều thông số về Vụ nổ lớn với độ chính xác cao và cho ra khám phá bất ngờ là sự giãn nở của vũ trụ không phải là đều mà đang được gia tốc.
Tương lai của vũ trụ.
Như ta đã biết, vũ trụ khởi đầu bằng một vụ nổ lớn cách đây khoảng 15 tỷ năm. sự dãn nở phụ thuộc vào cái gì? Đó chính là hằng số Hubble. Nó cho chúng ta biết chính xác về quá trình tăng tốc của sự giãn nở để đưa ra được kết luận chính xác bằng một phép tính ngược đơn giản.
Sự quan trọng của hằng số Hubble không chỉ là với quá khứ mà sẽ còn quan trọng hơn vì nó liên quan cả đến tương lai của vũ trụ nữa.
Ta hãy xét một đại lượng nữa có liên quan mật thiết đến tương lai của vũ trụ. Đó là mật độ trung bình của vũ trụ. Ta xét mối tương quan của mật độ này với một mật độ tới hạn có thể tính được.
- Nếu mật độ trung bình d < dt (mật độ tới hạn) thì vũ trụ là giãn nở mãi mãi (vũ trụ mở) với tốc độ dãn nở tiếp tục tăng và có dạng hyperbol
- Nếu d = dt thì vũ trụ vẫn tiếp tục giãn nở nhưng với tốc độ giảm dần nhưng không bao giờ về không (vũ trụ phẳng)
- Nếu d > dt thì sự giãn nở sẽ được thay dần bằng sự co lại và vũ trụ dần trở về trạng thái ban đầu (vũ trụ đóng) và có dạng elip
Người ta đã đo được dt = 10^ -29 g/cm^3
Theo như quan sát hiện nay thì vũ trụ có vẻ như là một vũ trụ mở, tức là giãn nở mãi mãi với tốc độ tăng nhanh tuy gia tốc có thể giảm. Có điều một lần nữa chúng ta lại phải dừng lại trước khi nghĩ rằng vậy là ta đã biết tất cả về tương lai của vũ trụ, có nghĩa là của cả nhân loại nữa. Đó là vì một lần nữa kẻ gây cản trở trên con đường khám phá vũ trụ của chúng ta lại là hằng số Hubble.
Và như vậy là với một hằng số chưa xác định hoàn toàn là hằng số Hubble ở đây thì chúng ta vẫn chưa thể xác định được chính xác mật độ tới hạn của vũ trụ. Chưa kể nếu có sự xuất hiện của vật chất tối thì mật độ của vũ trụ có thể sẽ khác với những gì chúng ta đã biết, và năng lượng tối đẩy nhanh tốc độ giãn nở của vũ trụ.
Thuyết Big Bang lạm phát
John Wheeler đưa ra thuyết “Vũ trụ luân hồi”, cho rằng lực hấp dẫn sẽ thắng sự giãn nở của vũ trụ và co lại, gọi là vụ co lớn (Bug Crunch). Và vụ bùng nổ tiếp theo sẽ khiến vũ trụ hồi sinh từ đống tro tàn. Quá trình cứ lặp lại mãi với các pha co giãn xen kẽ nhau. Đáng tiếc Big Crunch không phải là đối xứng gương hoàn hảo của Big Bang, và các vụ nổ sẽ ngày càng lớn hơn. Vì thế vũ trụ vẫn có thể có điểm khởi đầu tối hậu, một chủ đề thần học ưu thích.
Cần lưu ý rằng các hằng số vật lý ko hề thay đổi trong suốt 15 tỷ năm qua. Nếu thay đổi 1 lượng nhỏ 1 hằng số nào thì số phận của vũ trụ đã khác. Như vậy liệu tự nhiên có ưu ái con người, tạo ra 1 vũ trụ có con người sinh sống và nghiên cứu nó? Hay chỉ là một sự tình cờ? Để vấn đề này sang một bên và tìm hiểu câu chuyện về con mèo của Strodinger.
Tưởng tượng trong phòng có 1 con mèo và 1 lọ thuốc độc xianua. Trên bình thuốc độc có treo 1 cái búa được điều khiển bằng 1 chất phóng xạ mà các hạt nhân tự phân rã sau một thừoi gian nào đó. Khi hạt nhân đầu tiên phân rã, cái búa rơi xuống và thuốc độc thoát ra làm chết con mèo. Sự sống chết của con mèo phụ thuộc vào lần phân rã đầu tiên, nhưng theo cơ học lượng tử, nó được mô tả = xác suất: 50% cơ hội để 1 hạt nhân phân rã (hoặc ko) sau 1 giờ. Theo ông, con mèo ko thể vừa sống và chết. Nó chỉ hoạc chết, hoặc sống mà thôi.
Vì vậy, các nhà khoa học đề xuất nên một thuyết mới về các vũ trụ song song (hay đa vũ trụ), trong đó, vũ trụ của chúng ta chỉ là 1 trong số các vũ trụ đang tồn tại mà thôi. Ở vũ trụ này con mèo sống, ở vũ trụ khác cũng có 1 con mèo bị nhốt như thế, và nó chết.
Một số giả thuyết khác về vũ trụ
Giả thuyết thứ nhất chúng ta nói tới ở đây là giả thuyết về một "vũ trụ tĩnh định" /
Một giả thuyết khác chống lại lí thuyết BIGBANG là thuyết về sự mệt mỏi của ánh sáng.
Cơ học lượng tử
Cơ học lượng tử là một lý thuyết cơ học, nghiên cứu về chuyển động và các đại lượng vật lý liên quan đến chuyển động như năng lượng và xung lượng, của các vật thể nhỏ bé, ở đó lưỡng tính sóng hạt được thể hiện rõ.
Cơ học lượng tử được hình thành vào nửa đầu thế kỷ 20 do Max Planck, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli và một số người khác tạo nên. Một số vấn đề cơ bản của lý thuyết này vẫn được nghiên cứu cho đến ngày nay.
Nói chung, cơ học lượng tử không cho ra các quan sát có giá trị xác định. Thay vào đó, nó tiên đoán một phân bố xác suất, tức là, xác suất để thu được một kết quả khả dĩ từ một phép đo nhất định.
Một số nhà vật lý tin rằng cơ học lượng tử cho ta một mô tả chính xác thế giới vật lý với hầu hết các điều kiện khác nhau. Dường như là cơ học lượng tử không còn đúng ở lân cận các hố đen hoặc khi xem xét vũ trụ như một toàn thể. Ở phạm vi này thì cơ học lượng tử lại mâu thuẫn với lý thuyết tương đối rộng, một lý thuyết về hấp dẫn. Câu hỏi về sự tương thích giữa cơ học lượng tử và thuyết tương đối rộng vẫn là một lĩnh vực nghiên cứu rất sôi nổi.
Có một điều rất thú vị là Einstein ko chấp nhận cơ học lượng tử. Ông tin vào sự rõ ràng của vũ trụ và hành trạng vật chất. Ông ko tin vũ trụ bị chi phối bởi các định luật xác suất. Ông vẫn khăng khăng: “Chúa ko chơi trò xúc xắc”. Trong một lần tranh luận như thế, Niels Bohr đã cáu lên đáp: “Thôi, đừng bảo chua sphair làm gì nữa đi”.
Do thời gian hạn chế và nhiều khái niệm rất mới và phức tạp nên tôi dành phần này cho các độc giả quan tâm đến vật lý thiên văn tự tìm hiểu.
Big Bang trong thuyết dây
Lý thuyết trường lượng tử xem các hạt cơ bản (như điện tử, quark....) là chất điểm không kích thước. Năm 1984, lý thuyết dây xuất hiện để thống nhất thuyết tương đối và thuyết lượng tử, hai nền tảng của vật lý hiện đại. Theo đó cấu tử cơ bản của vũ trụ là dây một chiều (giống đoạn dây nhìn từ xa nên dường như chỉ có chiều dài), màng hai chiều (giống tờ giấy mỏng vô hạn) hay các thực thể nhiều chiều hơn (đến 10 chiều). Chúng luôn dao động và các kiểu dao động cộng hưởng được xem là các hạt cơ bản mà ta thấy. Khác với không thời gian bốn chiều trong thuyết tương đối, không thời gian trong lý thuyết dây có 11 chiều, với bảy chiều cong lại và nhỏ bằng độ dài Planck. Đó là lý do ta sống trong 11 chiều mà chỉ “thấy” bốn chiều đã trải rộng ra nhờ vụ nổ lớn.
Quá đẹp nên chỉ có thể hoặc đúng hoàn toàn hoặc sai hoàn toàn (phê phán năm 1986 của nhà vật lý hạt cơ bản đoạt giải Nobel Glashow), lý thuyết dây chứng tỏ các qui luật vật lý của thế giới “nhỏ” sau bức tường Planck hoàn toàn đồng nhất thế giới “lớn” trước bức tường. Điều đó cho phép đưa ra kịch bản mới cho Big Bang, theo đó khởi thuỷ không phải là một kì dị, mà là một trạng thái “hấp dẫn lượng tử” kích thước Planck với 11 chiều. Rồi một vụ nổ khiến bốn chiều không thời gian giãn ra tạo nên vũ trụ (lý thuyết dây giải thích được tại sao bảy chiều khác vẫn cong nhỏ như trước). Và nếu co lại, vũ trụ cũng không co về điểm kì dị chung cục Big Crunch (như mô hình Big Bang tiêu chuẩn), mà chỉ co đến kích thước Blanck rồi lại nở ra. Quá trình có thể lặp lại mãi như thế.
Theo lý thuyết dây thì vũ trụ chúng ta cũng có thể là một màng bốn chiều, vốn là biên của một hình cầu năm chiều. Nằm cách ta một khoảng cách vi mô trong chiều thứ năm là một màng khác, được gọi là “màng bóng” (như hình với bóng, nhưng bóng cũng thực như hình). Hai màng hình và bóng chỉ tương tác nhau qua lực hấp dẫn. Khi đó vật chất hay năng lượng tối của màng này chính là vật chất thông thường của màng bên cạnh. Hai màng có thể tự co giãn và va chạm nhau. Đối với chúng ta (đang sống trên một màng), cú và chạm chính là Big Bang. Và có thể có nhiều vụ nổ và co lớn nhỏ nối tiếp hay xen kẽ nhau.

Vật chất tối
Trên đây chúng ta đã nhắc nhiều tới sự tham gia của một khái niệm tương đối mới vào quá trình tiến hoá và cấu trúc vũ trụ. Đó là vật chất tối hay Dark Matter.
Năm 1933, Fritz Zwicky phát hiện ra sự xuất hiện của loai vật chất này khi đo vẫn tốc của các thiên hà trong quần thiên hà Coma.
Chúng ta cần biết rằng có 2 phương pháp cơ bản để xác định khối lượng của một thiên hà. Cách thứ nhất là sự phân tán vận tốc trong quần thiên hà. Thiên hà có khối lương càng lớn sẽ càng có sự phân tán vận tốc rõ nét ra các thiên hà lân cận và nhờ phương pháp đó có thể xác định được tổng khối lượng của quần thiên hà. Cách thứ hai là xác định độ trưng của các thiên hà để rút ra khối lượng của chúng và từ đó tính được tổng khối lượng của quần thiên hà. Điều đáng chú ý là khối lượng của một quần thiên hà tính theo cách thứ nhất luôn lớn hơn rất nhiều khối lượng tính theo cách hai (khaỏng 10 lần) cho dù tính đến sai số rất cao. Như vậy có thể suy đoán rằng có sự tồn tại của một loại vật chất còn chưa biết. Chính sự tồn tại của vật chất này mà khối lượng thật của các thiên hà thực chất lớn hơn rất nhiều khối lượng có thể quan sát được. Hiện vẫn chưa có thực nghiệm nào xác nhận hoàn toàn sự có mặt của các vật chất tối này. Dự đoán đó có thể là một loại vật chất đặc biệt cấu tạo từ những hạt gần như không bức xạ hoặc cũng có thể sự tồn tại khối lượng này đơn giản chỉ là các lỗ đen hoặc các sao lùn nâu, lùn đen (những loại thiên thể này không bao giờ có thể nhìn thấy được)

Kết luận
Cấu trúc vữ trụ là một trong những cấu trúc tự nhiên phức tạp nhất, những hiểu biết của con người về nó còn quá nhỏ bé. Trong thế kỉ 21, các nhà khoa học tiếp tục nghiên cứu và phát triển thuyết dây, thuyết M, hấp dẫn lượng tử nhằm thống nhất 4 lực cơ bản chi phối tự nhiên: lực hấp dẫn trong thuyết tương đối, lực điện từ, lực tương tác mạnh và lực tương tác yếu (bước ra từ cơ học lượng tử) và bước đầu có những thành tựu đáng kể.

Nguồn ảnh: NASA và wikipedia
Tài liệu tham khảo và khuyến nghị đọc thêm:
- Weiberg, Steven: Ba phút đầu tiên
- Greene, Brian: Giai điệu dây và bản giao hưởng vũ trụ, bản dịch của Phạm Văn Thiều, NXB Trẻ 2006.
- Hawking, Stephen: Lược sử thời gian, bản dịch của Phạm Văn Thiều
- Trịnh Xuân Thuận: Cái vô hạn trong lòng bàn tay, từ Big Bang tới giác ngộ; bản dịch của, NXB Trẻ 2006.
- Trịnh Xuân Thuận: Những con đường của ánh sáng, tập I, bản dịch của NXB Trẻ 2008.
- Hawking. Stephen: Vũ trụ trong vỏ hạt dẻ

(bài viết của Khánh Huyền chuẩn bị cho WSW 2008)
Hình đại diện của thành viên
lucgiac_muadong
Thợ mộc chính hiệu
Thợ mộc chính hiệu
 
Bài viết: 1415
Ngày tham gia: Thứ 6 Tháng 3 11, 2005 10:55 am
Đến từ: K54_ Hải Dương
Blog: http://vhntnamdinh.edu.vn/

Re: Nguồn gốc và tiến hóa vũ trụ

Bài viết chưa xemgửi bởi Aghuong » Thứ 7 Tháng 11 08, 2008 12:39 pm

Thầy Anh Vinh đáng kính của chúng em có thi thoảng vào diễn đàn không ạ?
Em đang rất muốn được thỉnh giáo thầy về mô hình lamda CDM một cách cụ thể. Em muốn xin thầy ít tài liẹu tin cậy về mô hình này được không ạ? Và thêm nữa, dựa và mô hình này , em muốn được hiểu hơn về 3 cách tính tuổi vũ trụ được đề cập đến trong bài trích của Lục giác mùa đông ạ. ^^
Thầy có thể giảng thêm về ý nghĩa của universe parameter được không ạ ?
em không nghe mùa thu
lá thu rơi xào xạc
con nai vàng ngơ ngác
đạp trên xác ...thợ săn.
Hình đại diện của thành viên
Aghuong
Thành viên
Thành viên
 
Bài viết: 23
Ngày tham gia: Chủ nhật Tháng 3 23, 2008 10:54 am
Đến từ: black hole ^_^

Re: Nguồn gốc và tiến hóa vũ trụ

Bài viết chưa xemgửi bởi letrongtuan » Thứ 7 Tháng 11 08, 2008 2:16 pm

- "Nguồn gốc" - Trịnh Xuân Thuận cũng là 1 cuốn sách đáng xem, nó tổng hợp hầu hết những gì ở trên, cách viết đơn giản, dễ hiểu cho người mới tìm hiểu, và (em rất thích cái này) có nhiều hình ảnh minh họa rất đẹp.
Yêu nước, thích ăn nhậu, thích xách balô đi bụi
Hình đại diện của thành viên
letrongtuan
Vô tướng tà vương
 
Bài viết: 361
Ngày tham gia: Thứ 6 Tháng 9 22, 2006 3:09 pm
Đến từ: Sài Gòn
Facebook: http://www.facebook.com/ltt.go

Re: Nguồn gốc và tiến hóa vũ trụ

Bài viết chưa xemgửi bởi lucgiac_muadong » Thứ 6 Tháng 11 14, 2008 1:43 pm

Tiếc là thầy Vinh rất ít khi vô diễn đàn.
Các tài liệu đó nếu có thể em nên gặp trực tiếp thầy để hỏi.
@letrongtuan: Các cuốn loại đó chỉ dùng để tìm hiểu thì được, chứ nghiên cứu thì không được em ạ. :)
Được cái bác Thuận rất giỏi trong việc biến các phương trình thành ngôn ngữ văn chương nên ai cũng thích đọc sách của bác ấy. ohyeah ohyeah ohyeah
Hình đại diện của thành viên
lucgiac_muadong
Thợ mộc chính hiệu
Thợ mộc chính hiệu
 
Bài viết: 1415
Ngày tham gia: Thứ 6 Tháng 3 11, 2005 10:55 am
Đến từ: K54_ Hải Dương
Blog: http://vhntnamdinh.edu.vn/


Quay về Kiến thức.

Ai đang trực tuyến?

Đang xem chuyên mục này: Không có thành viên nào đang trực tuyến1 khách